161 research outputs found

    The design of an analogue RF front end for a multi-role radio

    Get PDF

    Experimental Studies of the NaCs 53Π0 and a3Σ+ States

    Get PDF
    We report high resolution measurements of 372 NaCs 53Π0(v, J) ro-vibrational level energies in the range 0 ≤ v ≤ 22. The data have been used to construct NaCs 53Π0 potential energy curves using the Rydberg–Klein-Rees and inverted perturbation approximation methods. Bound-free 53Π0(v, J) → 1(a)3Σ+ emission has also been measured, and is used to determine the repulsive wall of the 1(a)3Σ+ state and the 53Π0 → 1(a)3Σ+ relative transition dipole moment function. Hyperfine structure in the 53Π0 state has not been observed in this experiment. This null result is explained using a simple vector coupling model

    Radiation damage to nucleoprotein complexes in macromolecular crystallography

    Get PDF
    Significant progress has been made in macromolecular crystallography over recent years in both the understanding and mitigation of X-ray induced radiation damage when collecting diffraction data from crystalline proteins. In contrast, despite the large field that is productively engaged in the study of radiation chemistry of nucleic acids, particularly of DNA, there are currently very few X-ray crystallographic studies on radiation damage mechanisms in nucleic acids. Quantitative comparison of damage to protein and DNA crystals separately is challenging, but many of the issues are circumvented by studying pre-formed biological nucleoprotein complexes where direct comparison of each component can be made under the same controlled conditions. Here a model protein-DNA complex C.Esp1396I is employed to investigate specific damage mechanisms for protein and DNA in a biologically relevant complex over a large dose range (2.07-44.63 MGy). In order to allow a quantitative analysis of radiation damage sites from a complex series of macromolecular diffraction data, a computational method has been developed that is generally applicable to the field. Typical specific damage was observed for both the protein on particular amino acids and for the DNA on, for example, the cleavage of base-sugar N1-C and sugar-phosphate C-O bonds. Strikingly the DNA component was determined to be far more resistant to specific damage than the protein for the investigated dose range. At low doses the protein was observed to be susceptible to radiation damage while the DNA was far more resistant, damage only being observed at significantly higher doses

    Purification and characterization of recombinant human renin for X-ray crystallization studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The renin-angiotensin-aldosterone system (RAS) cascade is a major target for the clinical management of hypertension. Although inhibitors of various components of this cascade have been developed successfully, development of renin inhibitors has proven to be problematic. The development of these inhibitors has been hindered by poor bioavailability and complex synthesis. However, despite the challenges of designing renin inhibitors, the enzyme remains a promising target for the development of novel treatments for hypertension. X-ray crystallographic data could greatly assist the design and development of these inhibitors. Here we describe the purification and characterization of recombinant human renin for x-ray crystallization studies.</p> <p>Results</p> <p>A cDNA encoding the full length of native human preprorenin (406 amino acid residues) was introduced into the HEK-293 cell line. A clonal cell line expressing prorenin was generated and grown under serum free conditions in a hollow fiber bioreactor. Prorenin was constitutively secreted and purified directly from the conditioned medium. Concanavalin A chromatography effectively enriched and purified prorenin to 90% homogeneity in a single step. Prorenin was converted to active renin by trypsin digestion to remove the propeptide. Active renin was further purified using a cation exchange column followed by a gel filtration column. Biochemical characterization of the recombinant enzyme showed both binding and catalytic properties were essentially identical to previously reported activities for purified renin. Crystals were grown using this material in our X-ray structure studies, and high resolution diffraction was obtained.</p> <p>Conclusion</p> <p>This present work describes a simple and efficient method for the generation and purification of active human renin. The protein is highly pure and is suitable for supporting structural biology efforts.</p

    X-ray tomographic reconstruction of macromolecular samples

    Get PDF

    Colouring cryo-cooled crystals: online microspectrophotometry

    Get PDF
    A portable and readily aligned online microspectrophotometer that can be easily installed on macromolecular crystallography beamlines is described. It allows measurement of the spectral characteristics of macromolecular crystals prior, during, and after the X-ray diffraction experiment
    corecore