37 research outputs found
Four methods for determining the composition of trace radioactive surface contamination of low-radioactivity metal
Four methods for determining the composition of low-level uranium- and
thorium-chain surface contamination are presented. One method is the
observation of Cherenkov light production in water. In two additional methods a
position-sensitive proportional counter surrounding the surface is used to make
both a measurement of the energy spectrum of alpha particle emissions and also
coincidence measurements to derive the thorium-chain content based on the
presence of short-lived isotopes in that decay chain. The fourth method is a
radiochemical technique in which the surface is eluted with a weak acid, the
eluate is concentrated, added to liquid scintillator and assayed by recording
beta-alpha coincidences. These methods were used to characterize two `hotspots'
on the outer surface of one of the He-3 proportional counters in the Neutral
Current Detection array of the Sudbury Neutrino Observatory experiment. The
methods have similar sensitivities, of order tens of ng, to both thorium- and
uranium-chain contamination.Comment: 22 pages, 19 figure
Measurement of the νe and total 8B solar neutrino fluxes with the Sudbury Neutrino Observatory phase-III data set
This paper details the solar neutrino analysis of the 385.17-day phase-III data set acquired by the Sudbury Neutrino Observatory (SNO). An array of 3He proportional counters was installed in the heavy-water target to measure precisely the rate of neutrino-deuteron neutral-current interactions. This technique to determine the total active 8B solar neutrino flux was largely independent of the methods employed in previous phases. The total flux of active neutrinos was measured to be 5.54-0.31+0.33(stat.)-0.34+0.36(syst.)×106 cm-2 s-1, consistent with previous measurements and standard solar models. A global analysis of solar and reactor neutrino mixing parameters yielded the best-fit values of Δm2=7.59-0.21+0.19×10 -5eV2 and θ=34.4-1.2+1.3degrees
Non-volatile voltage control of magnetization and magnetic domain walls in magnetostrictive epitaxial thin films
We demonstrate reproducible voltage induced non-volatile switching of the
magnetization in an epitaxial thin Fe81Ga19 film. Switching is induced at room
temperature and without the aid of an external magnetic field. This is achieved
by the modification of the magnetic anisotropy by mechanical strain induced by
a piezoelectric transducer attached to the layer. Epitaxial Fe81Ga19 is shown
to possess the favourable combination of cubic magnetic anisotropy and large
magnetostriction necessary to achieve this functionality with experimentally
accessible levels of strain. The switching of the magnetization proceeds by the
motion of magnetic domain walls, also controlled by the voltage induced strain