262 research outputs found

    Hunting for CDF Multi-Muon "Ghost" Events at Collider and Fixed-Target Experiments

    Full text link
    In 2008 the CDF collaboration discovered a large excess of events containing two or more muons, at least one of which seemed to have been produced outside the beam pipe. We investigate whether similar "ghost" events could (and should) have been seen in already completed experiments. The CDF di-muon data can be reproduced by a simple model where a relatively light X particle undergoes four-body decay. This model predicts a large number of ghost events in Fermilab fixed-target experiments E772, E789 and E866, applying the cuts optimized for analyses of Drell-Yan events. A correct description of events with more than two muons requires a more complicated model, where two X particles are produced from a very broad resonance Y. This model can be tested in fixed-target experiments only if the cut on the angles, or rapidities, of the muons can be relaxed. Either way, the UA1 experiment at the CERN ppbar collider should have observed O(100) ghost events.Comment: 15 pages, 9 figure

    Parton model versus color dipole formulation of the Drell-Yan process

    Get PDF
    In the kinematical region where the center of mass energy is much larger than all other scales, the Drell-Yan process can be formulated in the target rest frame in terms of the same color dipole cross section as low Bjorken-x deep inelastic scattering. Since the mechanisms for heavy dilepton production appear very different in the dipole approach and in the conventional parton model, one may wonder whether these two formulations really represent the same physics. We perform a comparison of numerical calculations in the color dipole approach with calculations in the next-to-leading order parton model. For proton-proton scattering, the results are very similar at low x_2 from fixed target to RHIC energies, confirming the close connection between these two very different approaches. We also compare the transverse momentum distributions of Drell-Yan dileptons predicted in both formulations. The range of applicability of the dipole formulation and the impact of future Drell-Yan data from RHIC for determining the color dipole cross section are discussed. A detailed derivation of the dipole formulation of the Drell-Yan process is also included.Comment: 20 pages, 5 figure

    B_c Meson Production in Nuclear Collisions at RHIC

    Get PDF
    We study quantitatively the formation and evolution of B_c bound states in a space-time domain of deconfined quarks and gluons (quark-gluon plasma, QGP). At the Relativistic Heavy Ion Collider (RHIC) one expects for the first time that typical central collisions will result in multiple pairs of heavy (in this case charmed) quarks. This provides a new mechanism for the formation of heavy quarkonia which depends on the properties of the deconfined region. We find typical enhancements of about 500 fold for the B_c production yields over expectations from the elementary coherent hadronic B_c-meson production scenario. The final population of bound states may serve as a probe of the plasma phase parameters.Comment: 9 Pages, 11 Postscript Figure

    Resummation of nuclear enhanced higher twist in the Drell Yan process

    Get PDF
    We investigate higher twist contributions to the transverse momentum broadening of Drell Yan pairs in proton nucleus collisions. We revisit the contribution of matrix elements of twist-4 and generalize this to matrix elements of arbitrary twist. An estimate of the maximal nuclear broadening effect is derived. A model for nuclear enhanced matrix elements of arbitrary twist allows us to give the result of a resummation of all twists in closed form. Subleading corrections to the maximal broadening are discussed qualitatively.Comment: 10 pages, 5 figures; v2: minor changes in text, acknowledgement added; v3: mistake in fig. 1 correcte

    Energy Loss versus Shadowing in the Drell-Yan Reaction on Nuclei

    Get PDF
    We present a new analysis of the E772 and E866 experiments on the nuclear dependence of Drell-Yan (DY) lepton pair production resulting from the bombardment of 2H^2H, Be, C, Ca, Fe, and W targets by 800 GeV/c protons at Fermilab. We employ a light-cone formulation of the DY reaction in the rest frame of the nucleus, where the dimuons detected at small values of Bjorken x_2 << 1 may be considered to originate from the decay of a heavy photon radiated from an incident quark in a bremsstrahlung process. We infer the energy loss of the quark by examining the suppression of the nuclear-dependent DY ratios seen as a function of projectile momentum fraction x_1 and dimuon mass M. Shadowing, which also leads to nuclear suppression of dimuons, is calculated within the same approach employing the results of phenomenological fits to deep inelastic scattering data from HERA. The analysis yields -dE/dz =2.73 +/- 0.37 +/- 0.5 GeV/fm for the rate of quark energy loss per unit path length, a value consistent with theoretical expectations including the effects of the inelastic interaction of the incident proton at the surface of the nucleus. This is the first observation of a nonzero energy loss effect in such experiments.Comment: 43 pages including 17 figure

    Nuclear dependence coefficient α(A,qT)\alpha(A,q_T) for the Drell-Yan and J/ψ\psi production

    Full text link
    Define the nuclear dependence coefficient α(A,qT)\alpha(A,q_T) in terms of ratio of transverse momentum spectrum in hadron-nucleus and in hadron-nucleon collisions: dσhAdqT2/dσhNdqT2Aα(A,qT)\frac{d\sigma^{hA}}{dq_T^2}/ \frac{d\sigma^{hN}}{dq_T^2}\equiv A^{\alpha(A,q_T)}. We argue that in small qTq_T region, the α(A,qT)\alpha(A,q_T) for the Drell-Yan and J/ψ\psi production is given by a universal function:\ a+bqT2a+b q_T^2, where parameters a and b are completely determined by either calculable quantities or independently measurable physical observables. We demonstrate that this universal function α(A,qT)\alpha(A,q_T) is insensitive to the A for normal nuclear targets. For a color deconfined nuclear medium, the α(A,qT)\alpha(A,q_T) becomes strongly dependent on the A. We also show that our α(A,qT)\alpha(A,q_T) for the Drell-Yan process is naturally linked to perturbatively calculated α(A,qT)\alpha(A,q_T) at large qTq_T without any free parameters, and the α(A,qT)\alpha(A,q_T) is consistent with E772 data for all qTq_T.Comment: latex, 28 pages, 10 figures, updated two figures, and add more discussion

    Phases of QCD, Thermal Quasiparticles and Dilepton Radiation from a Fireball

    Get PDF
    We calculate dilepton production rates from a fireball adapted to the kinematical conditions realized in ultrarelativistic heavy ion collisions over a broad range of beam energies. The freeze-out state of the fireball is fixed by hadronic observables. We use this information combined with the initial geometry of the collision region to follow the space-time evolution of the fireball. Assuming entropy conservation, its bulk thermodynamic properties can then be uniquely obtained once the equation of state (EoS) is specified. The high-temperature (QGP) phase is modelled by a non-perturbative quasiparticle model that incorporates a phenomenological confinement description, adapted to lattice QCD results. For the hadronic phase, we interpolate the EoS into the region where a resonance gas approach seems applicable, keeping track of a possible overpopulation of the pion phase space. In this way, the fireball evolution is specified without reference to dilepton data, thus eliminating it as an adjustable parameter in the rate calculations. Dilepton emission in the QGP phase is then calculated within the quasiparticle model. In the hadronic phase, both temperature and finite baryon density effects on the photon spectral function are incorporated. Existing dilepton data from CERES at 158 and 40 AGeV Pb-Au collisions are well described, and a prediction for the PHENIX setup at RHIC for sqrt(s) = 200 AGeV is given.Comment: 31 pages, 15 figures, final versio

    Evidence for SU(3) symmetry breaking from hyperon production

    Get PDF
    We examine the SU(3) symmetry breaking in hyperon semileptonic decays (HSD) by considering two typical sets of quark contributions to the spin content of the octet baryons: Set-1 with SU(3) flavor symmetry and Set-2 with SU(3) flavor symmetry breaking in HSD. The quark distributions of the octet baryons are calculated with a successful statistical model. Using an approximate relation between the quark fragmentation functions and the quark distributions, we predict polarizations of the octet baryons produced in e+ee^+e^- annihilation and semi-inclusive deeply lepton-nucleon scattering in order to reveal the SU(3) symmetry breaking effect on the spin structure of the octet baryons. We find that the SU(3) symmetry breaking significantly affects the hyperon polarization. The available experimental data on the Λ\Lambda polarization seem to favor the theoretical predictions with SU(3) symmetry breaking. We conclude that there is a possibility to get a collateral evidence for SU(3) symmetry breaking from hyperon production. The theoretical errors for our predictions are discussed.Comment: 3 tables, 14 figure

    Heavy Quark Photoproduction in Ultra-peripheral Heavy Ion Collisions

    Get PDF
    Heavy quarks are copiously produced in ultra-peripheral heavy ion collisions. In the strong electromagnetic fields, c c-bar and b b-bar are produced by photonuclear and two-photon interactions; hadroproduction can occur in grazing interactions. We present the total cross sections, quark transverse momentum and rapidity distributions, as well as the Q Q-bar invariant mass spectra from the three production channels. We consider AA and pA collisions at the Relativistic Heavy Ion Collider and Large Hadron Collider. We discuss techniques for separating the three processes and describe how the AA to pA production ratios might be measured accurately enough to study nuclear shadowing.Comment: Minor changes to satisfy referees and typo fixes; 52 pages including 17 figure

    Nuclear effects in the Drell-Yan process at very high energies

    Full text link
    We study Drell-Yan (DY) dilepton production in proton(deuterium)-nucleus and in nucleus-nucleus collisions within the light-cone color dipole formalism. This approach is especially suitable for predicting nuclear effects in the DY cross section for heavy ion collisions, as it provides the impact parameter dependence of nuclear shadowing and transverse momentum broadening, quantities that are not available from the standard parton model. For p(D)+A collisions we calculate nuclear shadowing and investigate nuclear modification of the DY transverse momentum distribution at RHIC and LHC for kinematics corresponding to coherence length much longer than the nuclear size. Calculations are performed separately for transversely and longitudinally polarized DY photons, and predictions are presented for the dilepton angular distribution. Furthermore, we calculate nuclear broadening of the mean transverse momentum squared of DY dileptons as function of the nuclear mass number and energy. We also predict nuclear effects for the cross section of the DY process in heavy ion collisions. We found a substantial nuclear shadowing for valence quarks, stronger than for the sea.Comment: 46 pages, 18 figures, title changed and some discussion added, accepted for publication in PR
    corecore