894 research outputs found

    What Shall We Do About The Organ

    Get PDF
    https://digitalcommons.acu.edu/crs_books/1585/thumbnail.jp

    Identification by Disaggregation

    Get PDF
    Standard economic theory predicts that the actions of individual participants in competitive markets have negligible effects on market-determined aggregates. Applied researchers, and even some econometric textbooks, incorrectly infer from this that market prices can be modeled as econometrically exogenous with respect to the quantity demanded of an individual consumer. This faulty inference has even led some researchers (for example, Robert Engle, 1978; Nicholas Kiefer, 1984; Roger Waud, 1974) to employ an estimation strategy we call identification by disaggregation (IBD). This procedure attempts to circumvent the simultaneity problem in a macro regression by disaggregating the dependent variable and estimating the relationship for individual agents or sectors. This note provides a simple proof that estimates using disaggregated dependent variables suffer, on average, from the same degree of simultaneity bias as the estimates using aggregate data

    Elucidating excited state electronic structure and intercomponent interactions in multicomponent and supramolecular systems

    Get PDF
    Rational design of supramolecular systems for application in photonic devices requires a clear understanding of both the mechanism of energy and electron transfer processes and how these processes can be manipulated. Central to achieving these goals is a detailed picture of their electronic structure and of the interaction between the constituent components. We review several approaches that have been taken towards gaining such understanding, with particular focus on the physical techniques employed. In the discussion, case studies are introduced to illustrate the key issues under consideration

    Improving Striping Operations through System Optimization - Phase 2

    Get PDF
    Striping operations generate a significant workload for MoDOT maintenance operations. The requirement for each striping crew to replenish its stock of paint and other consumable items from a bulk storage facility, along with the necessity to make several passes on most of the routes to stripe all the lines on that road, introduce the potential for inefficiencies in the form of deadhead miles that striping crew vehicles must travel while not actively applying pavement markings. These inefficiencies generate unnecessary travel, wasted time, and vehicle wear. Phase 2 updates a 2015 project that developed a decision support tool for scheduling and routing road striping operations. The updates presented in the final report improve the optimization model, which generates more user-friendly outputs

    Ground vs. excited state interaction in ruthenium-thienyl dyads:implications for through bond interactions in multicomponent systems

    Get PDF
    The vibrational and photophysical properties of mononuclear ruthenium(II) and ruthenium(III) polypyridyl complexes based on the ligands 2-(5'-(pyridin-2"-yl)-1'H-1',2',4'-triaz-3'-yl)-thiophene, 2-(5'-(pyrazin-2"-yl)-1'H-1',2',4'-triaz-3'-yl)-thiophene, are reported. The effect of the introduction of the non-innocent thiophene group on the properties of the triazole based ruthenium(II) complex is examined. The pH sensitive 1,2,4-triazole group, although influenced by the electron withdrawing nature of the thiophene group, does not facilitate excited state interaction of the thiophene and Ru(II) centre. Deuteriation and DFT calculations are employed to enable a deeper understanding of the interaction between the two redox-active centres and rationalise the difference between the extent of ground and excited state interaction in this simple dyad. The results obtained provide considerable evidence in support of earlier studies examining differences in ground and excited state interaction in multinuclear thiophene-bridged systems, in particular with respect to HOMO- and LUMO- mediated superexchange interaction processes.

    More Natural Models of Electoral Control by Partition

    Full text link
    "Control" studies attempts to set the outcome of elections through the addition, deletion, or partition of voters or candidates. The set of benchmark control types was largely set in the seminal 1992 paper by Bartholdi, Tovey, and Trick that introduced control, and there now is a large literature studying how many of the benchmark types various election systems are vulnerable to, i.e., have polynomial-time attack algorithms for. However, although the longstanding benchmark models of addition and deletion model relatively well the real-world settings that inspire them, the longstanding benchmark models of partition model settings that are arguably quite distant from those they seek to capture. In this paper, we introduce--and for some important cases analyze the complexity of--new partition models that seek to better capture many real-world partition settings. In particular, in many partition settings one wants the two parts of the partition to be of (almost) equal size, or is partitioning into more than two parts, or has groups of actors who must be placed in the same part of the partition. Our hope is that having these new partition types will allow studies of control attacks to include such models that more realistically capture many settings

    The Complexity of Computing Minimal Unidirectional Covering Sets

    Full text link
    Given a binary dominance relation on a set of alternatives, a common thread in the social sciences is to identify subsets of alternatives that satisfy certain notions of stability. Examples can be found in areas as diverse as voting theory, game theory, and argumentation theory. Brandt and Fischer [BF08] proved that it is NP-hard to decide whether an alternative is contained in some inclusion-minimal upward or downward covering set. For both problems, we raise this lower bound to the Theta_{2}^{p} level of the polynomial hierarchy and provide a Sigma_{2}^{p} upper bound. Relatedly, we show that a variety of other natural problems regarding minimal or minimum-size covering sets are hard or complete for either of NP, coNP, and Theta_{2}^{p}. An important consequence of our results is that neither minimal upward nor minimal downward covering sets (even when guaranteed to exist) can be computed in polynomial time unless P=NP. This sharply contrasts with Brandt and Fischer's result that minimal bidirectional covering sets (i.e., sets that are both minimal upward and minimal downward covering sets) are polynomial-time computable.Comment: 27 pages, 7 figure

    Statistical mechanics of voting

    Full text link
    Decision procedures aggregating the preferences of multiple agents can produce cycles and hence outcomes which have been described heuristically as `chaotic'. We make this description precise by constructing an explicit dynamical system from the agents' preferences and a voting rule. The dynamics form a one dimensional statistical mechanics model; this suggests the use of the topological entropy to quantify the complexity of the system. We formulate natural political/social questions about the expected complexity of a voting rule and degree of cohesion/diversity among agents in terms of random matrix models---ensembles of statistical mechanics models---and compute quantitative answers in some representative cases.Comment: 9 pages, plain TeX, 2 PostScript figures included with epsf.tex (ignore the under/overfull \vbox error messages
    • …
    corecore