40 research outputs found

    Meditation experience is associated with increased cortical thickness.

    Get PDF
    Abstract Previous research indicates that long-term meditation practice is associated with altered resting electroencephalogram patterns, suggestive of long lasting changes in brain activity. We hypothesized that meditation practice might also be associated with changes in the brain's physical structure. Magnetic resonance imaging was used to assess cortical thickness in 20 participants with extensive Insight meditation experience, which involves focused attention to internal experiences. Brain regions associated with attention, interoception and sensory processing were thicker in meditation participants than matched controls, including the prefrontal cortex and right anterior insula. Betweengroup differences in prefrontal cortical thickness were most pronounced in older participants, suggesting that meditation might offset age-related cortical thinning. Finally, the thickness of two regions correlated with meditation experience. These data provide the first structural evidence for experience-dependent cortical plasticity associated with meditation practice

    Identification of Bacterial Populations in Dairy Wastewaters by Use of 16S rRNA Gene Sequences and Other Genetic Markers

    No full text
    Hydraulic flush waste removal systems coupled to solid/liquid separators and circulated treatment lagoons are commonly utilized to manage the large amounts of animal waste produced on high-intensity dairy farms. Although these systems are common, little is known about the microbial populations that inhabit them or how they change as they traverse the system. Using culture-based and non-culture-based methods, we characterized the microbial community structure of manure, water from the separator pit, and water from the circulated treatment lagoon from a large dairy in the San Joaquin Valley of California. Our results show that both total bacterial numbers and bacterial diversity are highest in manure, followed by the separator pit water and the lagoon water. The most prevalent phylum in all locations was the Firmicutes (low-G+C, gram-positive bacteria). The most commonly occurring operational taxonomic unit (OTU) had a 16S rRNA gene (rDNA) sequence 96 to 99% similar to that of Clostridium lituseburense and represented approximately 6% of the manure derived sequences, 14% of the separator pit-derived sequences and 20% of the lagoon-derived sequences. Also highly prevalent was an OTU with a 16S rDNA sequence 97 to 100% similar to that of Eubacterium tenue, comprising approximately 3% of the manure-derived sequences, 6% of the separator pit-derived sequences and 9% of the lagoon-derived sequences. Taken together, these sequences represent approximately one-third of the total organisms in the lagoon waters, suggesting that they are well adapted to this environment

    Epitope characterization and variable region sequence of f1-40, a high-affinity monoclonal antibody to botulinum neurotoxin type a (Hall strain).

    Get PDF
    BACKGROUND: Botulism, an often fatal neuroparalytic disease, is caused by botulinum neurotoxins (BoNT) which consist of a family of seven serotypes (A-H) produced by the anaerobic bacterium Clostridium botulinum. BoNT, considered the most potent biological toxin known, is a 150 kDa protein consisting of a 100 kDa heavy-chain (Hc) and a 50 kDa light-chain (Lc). F1-40 is a mouse-derived, IgG1 monoclonal antibody that binds the light chain of BoNT serotype A (BoNT/A) and is used in a sensitive immunoassay for toxin detection. We report the fine epitope mapping of F1-40 and the deduced amino acid sequence of the variable regions of the heavy and light chains of the antibody. METHODS AND FINDINGS: To characterize the binding epitope of F1-40, three complementary experimental approaches were selected. Firstly, recombinant peptide fragments of BoNT/A light-chain were used in Western blots to identify the epitope domains. Secondly, a peptide phage-display library was used to identify the specific amino acid sequences. Thirdly, the three-dimensional structure of BoNT/A was examined in silico, and the amino acid sequences determined from the phage-display studies were mapped onto the three-dimensional structure in order to visualize the epitope. F1-40 was found to bind a peptide fragment of BoNT/A, designated L1-3, which spans from T125 to L200. The motif QPDRS was identified by phage-display, and was mapped to a region within L1-3. When the three amino acids Q138, P139 and D140 were all mutated to glycine, binding of F1-40 to the recombinant BoNT/A light chain peptide was abolished. Q-138, P-139 and D-140 form a loop on the external surface of BoNT/A, exposed to solvent and accessible to F1-40 binding. CONCLUSIONS: The epitope of F1-40 was localized to a single exposed loop (ss4, ss5) on the Lc of BoNT. Furthermore amino acids Q138, P139 and D140 forming the tip of the loop appear critical for binding
    corecore