6 research outputs found

    Extension of Gutenberg-Richter Distribution to Mw -1.3, No Lower Limit in Sight

    Get PDF
    With twelve years of seismic data from TauTona Gold Mine, South Africa, we show that mining-induced earthquakes follow the Gutenberg-Richter relation with no scale break down to the completeness level of the catalog, at moment magnitude MW −1.3. Events recorded during relatively quiet hours in 2006 indicate that catalog detection limitations, not earthquake source physics, controlled the previously reported minimum magnitude in this mine. Within the Natural Earthquake Laboratory in South African Mines (NELSAM) experiment\u27s dense seismic array, earthquakes that exhibit shear failure at magnitudes as small as MW −3.9 are observed, but we find no evidence that MW −3.9 represents the minimum magnitude. In contrast to previous work, our results imply small nucleation zones and that earthquake processes in the mine can readily be scaled to those in either laboratory experiments or natural faults

    Broadband Records of Earthquakes in Deep Gold Mines and a Comparison with Results from SAFOD, California

    Get PDF
    For one week during September 2007, we deployed a temporary network of field recorders and accelerometers at four sites within two deep, seismically active mines. The ground-motion data, recorded at 200 samples/sec, are well suited to determining source and ground-motion parameters for the mining-induced earthquakes within and adjacent to our network. Four earthquakes with magnitudes close to 2 were recorded with high signal/noise at all four sites. Analysis of seismic moments and peak velocities, in conjunction with the results of laboratory stick-slip friction experiments, were used to estimate source processes that are key to understanding source physics and to assessing underground seismic hazard. The maximum displacements on the rupture surfaces can be estimated from the parameter Rv, where v is the peak ground velocity at a given recording site, and R is the hypocentral distance. For each earthquake, the maximum slip and seismic moment can be combined with results from laboratory friction experiments to estimate the maximum slip rate within the rupture zone. Analysis of the four M 2 earthquakes recorded during our deployment and one of special interest recorded by the in-mine seismic network in 2004 revealed maximum slips ranging from 4 to 27 mm and maximum slip rates from 1.1 to 6:3 m=sec. Applying the same analyses to an M 2.1 earthquake within a cluster of repeating earthquakes near the San Andreas Fault Observatory at Depth site, California, yielded similar results for maximum slip and slip rate, 14 mm and 4:0 m=sec

    A Deployment of Broadband Seismic Stations in Two Deep Gold Mines, South Africa

    No full text

    Earthquakes: Radiated Energy and the Physics of Faulting - Introduction

    No full text
    This chapter contains sections titled: Introduction
    corecore