565 research outputs found

    Influences on the fraction of hydrophobic and hydrophilic black carbon in the atmosphere

    Get PDF
    Black carbon (BC) is a short term climate forcer that directly warms the atmosphere, slows convection, and hinders quantification of the effect of greenhouse gases on climate change. The atmospheric lifetime of BC particles with respect to nucleation scavenging in clouds is controlled by their ability to serve as cloud condensation nuclei (CCN). To serve as CCN under typical conditions, hydrophobic BC particles must acquire hygroscopic coatings. However, the quantitative relationship between coatings and hygroscopic properties for ambient BC particles is not known nor is the time scale for hydrophobic-to-hydrophilic conversion. Here we introduce a method for measuring the hygroscopicity of externally and internally mixed BC particles by coupling a single particle soot photometer with a humidified tandem differential mobility analyzer. We test this technique using uncoated and coated laboratory generated model BC compounds and apply it to characterize the hygroscopicity distribution of ambient BC particles. From these data we derive that the observed number fraction of BC that is CCN active at 0.2% supersaturation is generally low in an urban area near sources and that it varies with the trajectory of the airmass. We anticipate that our method can be combined with measures of air parcel physical and photochemical age to provide the first quantitative estimates for characterizing hydrophobic-to-hydrophilic conversion rates in the atmosphere.Peer reviewe

    Modelling multi-phase halogen chemistry in the remote marine boundary layer: Investigation of the influence of aerosol size resolution on predicted gas-and condensed-phase chemistry

    Get PDF
    A coupled box model of photochemistry and aerosol microphysics which explicitly accounts for size-dependent chemical properties of the condensed-phase has been developed to simulate the multi-phase chemistry of chlorine, bromine and iodine in the marine boundary layer (MBL). The model contains separate seasalt and non-seasalt modes, each of which may be composed of 1–16 size-bins. By comparison of gaseous and aerosol compositions predicted using different size-resolutions with both fixed and size-dependent aerosol turnover rates, it was found that, for halogen-activation processes, the physical property initialisation of the aerosol-mode has a significant influence on gas-phase chemistry. Failure to adequately represent the appropriate physical properties can lead to substantial errors in gas-phase chemistry. The size-resolution of condensed-phase composition has a less significant influence on gas-phase chemistry

    Partial Derivative Fitted Taylor Expansion: An efficient method for calculating gas/liquid equilibria in atmospheric aerosol particles - Part 2: Organic compounds

    Get PDF
    A flexible mixing rule is presented which allows the calculation of activity coefficients of organic compounds in a multi-component aqueous solution. Based on the same fitting methodology as a previously published inorganic model (Partial Differential Fitted Taylor series Expansion; PD-FiTE), organic PD-FiTE treats interactions between binary pairs of solutes with polynomials of varying order. The numerical framework of organic PD-FiTE is not based on empirical observations of activity coefficient variation, rather a simple application of a Taylor Series expansion. Using 13 example compounds extracted from a recent sensitivity study, the framework is benchmarked against the UNIFAC model. For 1000 randomly derived concentration ranges and 10 relative humidities between 10 and 99%, the average deviation in predicted activity coefficients was calculated to be 3.8%. Whilst compound specific deviations are present, the median and inter-quartile values across all relative humidity range always fell within ±20% of the UNIFAC value. Comparisons were made with the UNIFAC model by assuming interactions between solutes can be set to zero within PD-FiTE. In this case, deviations in activity coefficients as low as −40% and as high as +70% were found. Both the fully coupled and uncoupled organic PD-FiTE are up to a factor of ≈12 and ≈66 times more efficient than calling the UNIFAC model using the same water content, and ≈310 and ≈1800 times more efficient than an iterative model using UNIFAC. The use of PD-FiTE within a dynamical framework is presented, demonstrating the potential inaccuracy of prescribing fixed negative or positive deviations from ideality when modelling the evolving chemical composition of aerosol particles

    In situ aerosol measurements taken during the 2007 COPS field campaign at the Hornisgrinde ground site

    Get PDF
    Copyright @ 2011 Royal Meteorological Society.The Convective and Orographically-induced Precipitation Study (COPS) campaign was conducted during the summer of 2007. A suite of instruments housed at the top of the Hornisgrinde Mountain (1156 m) in the Black Forest region of south-west Germany provided datasets that allow an investigation into the physical, chemical and hygroscopic properties of the aerosol particles sampled during COPS. Organic mass loadings were found to dominate the aerosol composition for the majority of the project, exceeding 8 µg m−3 during a period of high pressure, high temperature, and low wind speed. The ratio of organic:sulphate sub-micron mass concentration exceeds 10:1 during the same time period. Back trajectories show air from this time-frame passing slowly over the local forest and not passing over any local anthropogenic sources. Occasional peaks in nitrate mass loadings were associated with changes in the typical wind direction from south-westerly to north-westerly where air had passed over the Stuttgart region. Size distribution data shows a dominant accumulation-mode when the measurement site was free from precipitation events. A sharp increase in ultrafine particle number concentration was seen during most days commencing around noon. The apparent growth of these particles is associated with an increase in organic mass loading, suggesting condensational growth. For the most part, with the exception of the high pressure period, the aerosol properties recorded during COPS were comparable to previous studies of continental aerosol properties.NER

    Aerosol processes relevant to the indoor environment simulated in a detailed chemistry and aerosol microphysics model:S.P. O’Meara1,2, G. McFiggans2 and N. Carslaw3 1National Centre for Atmospheric Science, UK 2Department of Earth and Environmental Sciences, University of Manchester, Manchester, M13 9PL, UK 3Department of Environment and Geography, University of York, York, YO10 5NG, UK Keywords: model, aerosol, indoor air quality, indoor environment, HOMs. Associated conference topics: 4.1, 5.6 Presenting author email: [email protected]

    Get PDF
    A mathematical model (CHemistry with Aerosol Microphysics (PyCHAM)) is extended from including detailed gas-phase chemistry with dynamic gas-particle and gas-single surface (e.g. wall) partitioning to also including surface reactions, partitioning to multiple surfaces and wavelength-dependent transmission of natural light. The improved PyCHAM can simulate physicochemical processes occurring indoors. The combination of processes now simulated in PyCHAM alongside relatively detailed chemistry is novel compared to alternative models. Furthermore, PyCHAM is open-source and includes a user-friendly interface and manual (PyCHAM (2023)). Here we present the ability of PyCHAM to reproduce observations from indoor environments and provide additional insight. In particular, we compare against observations in homes that target processes affecting indoor air quality: gas-surface partitioning (e.g. Figure 1), surface reactions, light transmission through windows, particle deposition to surfaces, indoor emission of gases and particles, indoor-outdoor exchange of gases and particles. In Figure 1 of this abstract is an example of PyCHAM reproducing observations: when semi-volatile organic components (SVOC) are present on indoor surfaces and allowed to partition into the gas-phase and then the particle-phase, indoor particle concentrations of organics (separated by alkane-equivalent volatility bins (carbon number (C) 24-31)) increases as the mass concentration of particles with diameter less than 2.5 μm (PM2.5) increases. The same trend, with comparable gradient (m), is reported in observations from a recently occupied household (Lunderberg et al (2020)). As an example of the detail available from PyCHAM, we report the role of Highly Oxygenated Molecules (HOMs) on particle loading and oxidation state, since chamber studies indicate HOMs can significantly affect these properties (Kruza et al (2020)). The role of HOMs is investigated over several cases in which the following variables are changed within published ranges: surface deposition of ozone; surface reactions affecting ozone, nitrogen oxides and nitrous acid; source strength of indoor and outdoor particulates; source strength of indoor and outdoor gases

    A curved multi-component aerosol hygroscopicity model framework: Part 1 – Inorganic compounds

    Get PDF
    A thermodynamic modelling framework to predict the equilibrium behaviour of mixed inorganic salt aerosols is developed, and then coupled with a technique for finding a solution to the Kohler equation in order to create a diameter dependent hygroscopic aerosol model (Aerosol Diameter Dependent Equilibrium Model – ADDEM). The model described here provides a robust and accurate inorganic basis using a mole fraction based activity coefficient model and adjusted energies of formation for treating solid precipitation. The model framework can accommodate organic components, though this added complexity is considered in a companion paper, this paper describes the development of the modelling architecture to be used and predictions of an inorganic model alone. The modelling framework has been developed to flexibly use a combination of mixing rules and other potentially more accurate techniques where available to calculate the water content. Comparisons with other state-of-the-art general equilibrium models and experimental data are presented and show excellent agreement. The Kelvin effect can be considered in this scheme using a variety of surface tension models. Comparison of predicted diameter dependent phenomena, such as the increased relative humidity for onset of deliquescence with decreasing diameter, with another diameter dependent model is very good despite the different approach used. The model is subject to various sensitivities. For the inorganic systems studied here, the model is sensitive to choice of surface tension scheme used, which decreases for larger aerosol. Large sensitivities are found for the value of dry density used. It is thus likely that the history of the aerosol studied in a hygroscopic tandem differential mobility analyser (HTDMA), specifically the nature of the drying process that will influence the final crystalline form, will create systematic uncertainties upon comparisons with theoretical predictions. However, the magnitudes of all of the above sensitivities are potentially less than those introduced when using a semi ideal growth factor analogue for certain conditions

    Cloud condensation nucleus (CCN) behavior of organic aerosol particles generated by atomization of water and methanol solutions

    Get PDF
    Cloud condensation nucleus (CCN) experiments were carried out for malonic acid, succinic acid, oxalacetic acid, DL-malic acid, glutaric acid, DL-glutamic acid monohydrate, and adipic acid, using both water and methanol as atomization solvents, at three operating supersaturations (0.11%, 0.21%, and 0.32%) in the Caltech three-column CCN instrument (CCNC3). Predictions of CCN behavior for five of these compounds were made using the Aerosol Diameter Dependent Equilibrium Model (ADDEM). The experiments presented here expose important considerations associated with the laboratory measurement of the CCN behavior of organic compounds. Choice of atomization solvent results in significant differences in CCN activation for some of the compounds studied, which could result from residual solvent, particle morphology differences, and chemical reactions between the particle and gas phases. Also, significant changes in aerosol size distribution occurred after classification in a differential mobility analyzer (DMA) for malonic acid and glutaric acid. Filter analysis of adipic acid atomized from methanol solution indicates that gas-particle phase reactions may have taken place after atomization and before the methanol was removed from the sample gas stream. Careful consideration of these experimental issues is necessary for successful design and interpretation of laboratory CCN measurements

    The sensitivity of secondary organic aerosol component partitioning to the predictions of component properties – Part 1: A systematic evaluation of some available estimation techniques

    Get PDF
    A large number of calculations of the absorptive partitioning of organic compounds have been made using a number of methods to predict the component vapour pressures, <i>p</i><sup>0</sup>, and activity coefficients, <i>γ</i><sub><i>i</i></sub>, required in the calculations. The sensitivities of the predictions in terms of the condensed component masses, volatility, O:C ratio, molar mass and functionality distributions to the choice of <i>p</i><sup>0</sup> and <i>γ</i><sub><i>i</i></sub> models and to the number of components to represent the organic mixture have been systematically compared. The condensed component mass was found to be highly sensitive to the vapour pressure model, and less sensitive to both the activity coefficient model and the number of components used to represent the mixture although the sensitivity to the change in property estimation method increased substantially with increased simplification in the treatment of the organic mixture. This was a general finding and was also clearly evident in terms of the predicted component functionality, O:C ratio, molar mass and volatility distributions of the condensed organic components. Within the limitations of the study, this clearly demonstrates the requirement for more accurate representation of the <i>p</i><sup>0</sup> and <i>γ</i><sub><i>i</i></sub> of the semi-volatile organic proxy components used in simplified models as the degree of simplification increases. This presents an interesting paradox, since such reduction in complexity necessarily leads to divergence from the complex behaviour of real multicomponent atmospheric aerosol

    Latitudinal aerosol size distribution variation in the Eastern Atlantic Ocean measured aboard the FS-Polarstern

    Get PDF
    International audienceAerosol size distribution measurements from 0.03 µm to 25 µm diameter were taken at ambient humidity aboard the German research vessel, FS-Polarstern, during a transect from Bremerhaven in northern Germany, to Cape Town in South Africa across latitudes 53°32' N to 33°55' S, denoted cruise number ANT XXI/1. The data were segregated according to air mass history, wind speed and latitude. Under clean marine conditions, the averaged size distributions were generally in good agreement with those reported previously for diameters less than 0.5 µm and can be approximated by two log-normal modes, with significant variation in the mean modal diameters. Two short periods of tri-modal behaviour were observed. Above 0.5 µm, there is indication of a limit to the mechanical generation of marine aerosol over the range of wind speeds observed (~1.7?14.7 m s?1). A new technique to determine the errors associated with aerosol size distribution measurements using Poisson statistics has been applied to the dataset, providing a tool to determine the necessary sample or averaging times for correct interpretation of such data. Finally, the data were also used to investigate the loss rate of condensing gases with potentially important consequences for heterogeneous marine photochemical cycles
    corecore