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Abstract. A flexible mixing rule is presented which al-
lows the calculation of activity coefficients of organic com-
pounds in a multi-component aqueous solution. Based on the
same fitting methodology as a previously published inorganic
model (Partial Differential Fitted Taylor series Expansion;
PD-FiTE), organic PD-FiTE treats interactions between bi-
nary pairs of solutes with polynomials of varying order. The
numerical framework of organic PD-FiTE is not based on
empirical observations of activity coefficient variation, rather
a simple application of a Taylor Series expansion. Using
13 example compounds extracted from a recent sensitivity
study, the framework is benchmarked against the UNIFAC
model. For 1000 randomly derived concentration ranges and
10 relative humidities between 10 and 99 %, the average de-
viation in predicted activity coefficients was calculated to be
3.8 %. Whilst compound specific deviations are present, the
median and inter-quartile values across all relative humidity
range always fell within±20 % of the UNIFAC value. Com-
parisons were made with the UNIFAC model by assuming
interactions between solutes can be set to zero within PD-
FiTE. In this case, deviations in activity coefficients as low
as−40 % and as high as +70 % were found. Both the fully
coupled and uncoupled organic PD-FiTE are up to a factor of
≈ 12 and≈ 66 times more efficient than calling the UNIFAC
model using the same water content, and≈ 310 and≈1800
times more efficient than an iterative model using UNIFAC.
The use of PD-FiTE within a dynamical framework is pre-
sented, demonstrating the potential inaccuracy of prescrib-
ing fixed negative or positive deviations from ideality when
modelling the evolving chemical composition of aerosol par-
ticles.

1 Introduction and rationale

Gas to particle partitioning, driven by a difference in equi-
librium and partial pressures, is a key process that dictates
the evolving chemical composition of atmospheric aerosol
particles, thus their environmental impacts. The equilibrium
vapour pressure above a solution is given by:

Pi = Poγixi (1)

wherePi is the equilibrium vapour pressure,Po the pure
component vapour pressure,γi the activity coefficient in so-
lution andxi the mole fraction of componenti in solution.
Sensitivity to choice of predictive technique for calculating
Po, in terms of aerosol mass and properties, has recently
been reviewed byMcFiggans et al.(2010) and Topping et
al. (2011). In this paper we use the technique for calculating
Po recommended byBarley et al.(2009).

In a previous publication, a new hybrid reduced complex-
ity ionic mixing rule for calculatingγi and hence, equi-
librium vapour pressure of inorganic condensates, was pre-
sented (Topping et al., 2009). PD-FiTE, or Partial Derivative
Fitted Taylor Series Expansion, was inspired by the MTEM
model (Zaveri et al., 2005), which in turn is based on the
observation that the logarithm of activity coefficients var-
ied linearly as a function of water activity when expressed
in terms of equivalent mole fractions (Zaveri et al., 2005).
Whilst the terms within the inorganic PD-FiTE model Tay-
lor Series Expansion are based on empirical observations of
activity coefficient variation, the development of the organic
model in this paper is not. Rather, in this manuscript we
test the applicability of another Taylor Series Expansion ap-
plied to organic solutes in water, where the model parame-
ters are derived solely to ensure correct limiting behaviour
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2 D. Topping et al.: Partial Derivative Fitted Taylor Expansion

and interaction terms derived by fitting this framework to
a more complex benchmark model (UNIFAC). This fitting
methodology is the same methodology applied to inorganic
PD-FiTE, despite the different approach used in defining the
model terms and concentration scales, hence we use the same
acronym here.

Activity coefficients account for interactions taking place
in solution. Numerous model are available for both inor-
ganic, organic and mixed inorganic-organic solutions. Un-
fortunately these models are far too expensive for inclusion
in large scale models (Zaveri et al., 2005; Topping et al.,
2009). As inorganic and organic activity coefficient frame-
works have different theoretical constructs it is difficult to
build reduced complexity frameworks which are equally ap-
plicable to both systems (Zuend et al., 2011). Following inor-
ganic PD-FiTE, in this paper we use the same Taylor Series
expansion methodology to develop a model for organic so-
lutes in aqueous solutions via an appropriate representation
of multi-component concentrations and interactions. Assess-
ing the accuracy of both the inorganic and organic versions
of PD-FiTE to mixed inorganic-organic aqueous systems will
form the focus of a future study, using the revised AIOMFAC
model as a benchmark (Zuend et al., 2011).

2 Reduced complexity activity coefficient framework

The numerical basis for the inorganic PD-FiTE is a simple
Taylor series expansion involving only the first order term:

lnγi(x
′′

j ,x′′

k ,...RH) = lnγ o
i (RH)+

N∑
j 6=i

(
∂ lnγi

∂x′′

j

)
(RH)x′′

j (2)

where lnγi(RH) is the activity coefficient of component
i in the mixture as a function of relative humidity (RH),
lnγ o

i (RH) the binary activity coefficient of componenti in
water at a given RH,x′′

i the equivalent mole fraction of com-
ponenti. As described byTopping et al.(2009), the interac-
tion terms implicitly account for any effects of partial disso-
ciation of the HSO4-ion. Since the dissociation of organics
cannot be modelled with any certainty (Clegg and Seinfeld,
2006), only interactions between undissociated molecules
are considered. For the organic model, interactions are re-
stricted to binary pairs of solutes, thus reducing computa-
tional cost. The activity coefficient function then takes on
the following general form:

γ = F(

N∑
i=1

ci

N∑
j 6=i

cj ) (3)

WhereN represents the total number of solutes,ci andcj

represent a specific concentration scale for componentsi and
j . Models such as UNIQUAC (Abrams et al., 1975) and the
Wilson (Wilson, 1964) equations also treat binary interac-
tions, the mixture represented by the sum of these pairs. In
the residual and combinatorial expressions of the UNIQUAC

model, binary pairs are coupled using absolute mole fractions
weighted according to molecular surface area and volume pa-
rameters:

8i =
rixi∑m

j=1rjxj

(4)

θi =
qixi∑m

j=1qjxj

(5)

wherem represents the total number of compounds,ri andqi

are the surface area and volume parameters for componentsi

with associated mole fractionxi . In organic PD-FiTE, choice
of concentration scale can be chosen according to the limit-
ing requirements of the numerical framework. The numeri-
cal framework of organic PD-FiTE is not based on empirical
observations of activity coefficient variation, rather the same
parameter fitting methodology is used as the inorganic frame-
work,as detailed in Sect. 3. The ability of this new frame-
work to replicate activity coefficients for various concentra-
tions is given in Sect. 4 where the UNIFAC model is used as
a benchmark. As with inorganic PD-FiTE, for a one com-
ponent system (i.e. one organic solute in water), the activity
coefficient of the solute must equal the binary activity coef-
ficient in water. This represents the first term in the Taylor
series expansion:

lnfi(xj = o,xk = o,...) = lnf o
i (6)

where we use the symbolf to represent activity coefficients
of organic solutes. As inorganic PD-FiTE was based on the
empirical observation that the logarithm of solute activity co-
efficients varies roughly linearly with water activity, thus RH
for a bulk solution, Eq. (6) would be written explicitly as
a function of RH were we able to use the same basis. As
mentioned previously, this framework does not use the same
empirical basis. For the inorganic model, the range of com-
pounds defining the composition space was relatively small
and, using the PD-FiTE fitting methodology, the variation
in water activity of the whole system was well constrained.
For the organic model, it is likely that the compounds se-
lection will change depending on the application, thus sys-
tems studied. Whilst the water activity scale could be used,
given the fitting methodology optimizes interaction terms,
as new compounds are introduced every model parameter
would have to be refit. To mitigate this problem, a differ-
ent concentration scale is chosen . In Eq. (2), the expression
x refers to equivalent mole fractions. In the first instance,
the Taylor Series expression used for organic PD-FiTE is ex-
pressed using mole fractions of components in the multicom-
ponent mixture (including water). For the organic model, bi-
nary activity coefficients and interaction are expressed as a
function of water mole fraction. The reason for this is two-
fold. Firstly, this will aid development of coupled inorganic-
organic approaches in the future. Whilst interaction terms
between inorganic and organic components are not presented
here, the effect of dilution by the water associated with the
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inorganic fraction can be used to effect the organic solute ac-
tivity coefficients in a semi-coupled approach. Secondly, the
combination of data from binary systems assumes the solvent
to be water. This allows future expansion without the need to
run a thermodynamic model to derive fits as a function of RH
for each binary pair. It is possible that multiple phases exist
in aerosol particles in the atmosphere. However, solving this
problem is extremely challenging even for ternary systems
(Zuend et al., 2011) and currently cannot be generalised to
complex mixtures of multiple organic and inorganic solutes.
In the absence of treatment of phase separation or mixed sol-
vent system, taking water as the solvent Eq. (6) becomes:

lnfi(xj = o,xk = o,...xw) = lnf o
i (xw) (7)

and the generic Taylor series expansion is written as:

lnfi(xj ,xk,...xw) = lnf o
i (xw)+

N∑
j 6=i

(
∂ lnfi

∂xj

)
(xw)xj (8)

The reliance on data from binary systems is an important
feature of any flexible organic activity framework. Whilst the
inorganic fraction of aerosol particles is restricted to small
range of compounds, the number of organic compounds act-
ing as potential condensates can be very large. With this
in mind, the form of the expression encapsulated within the
summation can now be chosen. Taking a hypothetical ternary
system of organic compounds “A” and “B”, starting with a bi-
nary solution of component “A” in water, as component “B”
is added, the deviation in activity coefficientfA has to be ac-
counted for using an appropriate concentration scale. Equa-
tion (8) can be re-written as:

lnfA(xB,xw) = lnf o
A(xw)+

N∑
j 6=i

(
∂ lnfA

∂xB

)
(xw)xB (9)

To ensure correct limiting behaviour, the difference be-
tween the binary activity coefficient lnf o

A(xw) and ternary
activity coefficient lnfA(xB,xw) can be expressed a function
of dry solute mole fractions. As the dry mole fraction of so-

lute “B” approaches zero, the term
(

∂lnfA
∂xB

)
xw

converges to

zero. Therefore, for a specific mole fraction of water, Eq. (9)
is re-written as:

lnfA(x′

B,xw = c) = lnf o
A(xw = c)+

(
∂ lnfA

∂x′

B

)
xw=c

x′

B (10)

wherex′

B is the dry mole fraction of solute “B”. As “B”
tends to zero, the activity coefficient of “A” converges to the
binary activity coefficient at a specific concentration of wa-
ter. Parameters in inorganic PD-FiTE were optimised using
the ADDEM thermodynamic model (Topping et al., 2005).
The same parameter optimisation approach is used here. The

term
(

∂ lnfA
∂x′

B

)
xw=c

x′

B is re-written as a specific function of

x′

B:(
∂ lnfA

∂x′

B

)
xw=c

x′

B = (β(F (x′

B))xw=c) (11)

whereβ now represents a scaling factor in lnfA , at a spe-
cific concentration of water, as the dry solute mole fraction
of “B” changes. Whilst a simple scaling factor that varies lin-
early withx′

B could be used, the order of polynomial chosen
(e.g. linear, quadratic, cubic, etc) is based on accuracy of fit
as compared to UNIFAC predictions as described in Sect.4.

Equation (11) is not complete and variability of
(

∂ lnfA
∂x′

B

)
as

a function ofxw is required. As the concentration of compo-
nent “A” approaches zero, the magnitude of the dependence
of β(F (x′

B)) on the concentration of water increases. There-
fore we introduce another variable to Eq. (11):(

∂ lnfA

∂x′

B

)
= (β(F (x′

B))xw)∗(α(F (xw))xA→0) (12)

where(α(F (xw))xA→0) represents the variation of
(

∂ lnfA
∂x′

B

)
as a function of water mole fraction as “A” approaches zero,
and (βx′

B
) represents the scaling of(α(F (xw))xA→0) as a

function ofx′

B.
We can now write the generalised expression for lnfA as:

lnfA(x′

B,x′

C,x′

D,...xw) = lnf o
A(xw)+

N∑
i 6=A

(βi,A(x′

i)xw)(αi,A(xw)xA→0) (13)

Where the variables encapsulated within the summation can
be expressed as:

αB,A(xwxA → 0) =

C(0)∗xo
w +C(1)∗xo−1

w ..[o= polynomial order] (14)

βB,A(x′

B)xw =

D(0)∗x′Bo
+D(1)∗x′Bo−1..[o= polynomial order] (15)

The rationale behind the above framework is best illus-
trated using an example. Two compounds were randomly
selected within the UNIFAC framework with the following
functional groups: (1) CH3 ×2, CH2 ×1, OH×1, COOH×1
(compound “A”); (2) CH2 ×1, COOH×1 (compound “B”).
Figure1 shows a surface plot of lnfA(x′

B,xw)− lnf o
A(xw) or

1lnfA as a function ofx′

B andxw. As the “dry” mole frac-
tion of solute “B” tends to zero, the value of1lnfA tends to
zero for all concentrations of water. However, as “A” tends to
zero, the variability of1lnfA varies non-linearly as a func-
tion of xw, the magnitude increases as “A” decreases.

In any higher order systems, the assumption is made that
the behaviour of each binary pair holds in the mixture. How-
ever, the use of total mole fractions and dry mole fractions
ensures an appropriate dilution effect is captured. Compar-
isons between organic PD-FiTE with the UNIFAC model are
presented in Sect.4.

In the following section, the procedure used for constrain-
ing both(βx′

B) and(α(F (xw))xA→0) is described.

www.geosci-model-dev.net/5/1/2012/ Geosci. Model Dev., 5, 1–13, 2012
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Fig. 1. Difference in activity coefficient of compound “A” as a function of x′B and xw. The colour-scale
is bound by red (low values) to purple (high values)
figure

30

Fig. 1. Difference in activity coefficient of compound “A” as a func-
tion of x′

B andxw. The colour-scale is bound by red (low values) to
purple (high values).

Fig. 2. Difference in activity coefficient of compound 1 as a function of x′3 and xw. The compound
numbers and SMILES strings are listed in Table 1. The colour-scale is bound by red (low values) to
purple (high values)
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Fig. 2. Difference in activity coefficient of compound 1 as a func-
tion of x′

3 andxw. The compound numbers and SMILES strings are
listed in Table 1. The colour-scale is bound by red (low values) to
purple (high values).

3 Parameter fitting

3.1 Activity coefficients

Using the same methodology described by
Topping et al.(2009), the interaction terms in the model
are optimised based on fitting to a more complex scheme,
the UNIFAC model (Fredenslund et al., 1975). Parameters
(βB,A(x′

B)xw) and (αB,A(xw)xA→0) are expressed using
polynomials as a function ofx′

B andxw respectively. The
required level of complexity, or order of the polynomials,
are dictated by setting the tolerance on two independent
statistical variables, automating the whole process. The
order of fitting to both parameters is important. First, the
polynomials for(αB,A(xw)xA→0) are determined by setting
the dry mole fraction of “A”, x′

A to a negligible amount

Fig. 3. Difference in activity coefficient of compound 1 as a function of x′4 and xw. The compound
numbers and SMILES strings are listed in Table 1. The colour-scale is bound by red (low values) to
purple (high values)
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Fig. 3. Difference in activity coefficient of compound 1 as a func-
tion of x′

4 andxw. The compound numbers and SMILES strings are
listed in Table 1. The colour-scale is bound by red (low values) to
purple (high values).

(0.0001). Following this, the mole fraction of water is varied
and thexw axes in Fig.1 is populated. The order of the
polynomial is chosen by selecting the best fit between 1st
to 8th order polynomials in the MATLAB software package
7.6.0 (R2008a). For each polynomial fit, the coefficients
are derived through initialisation with a random number
generator which is run 1000 times, the fitting routine using
the Levenberg Marquardt algorithm. The point at which the
order of a polynomial meets the criteria for being chosen
is defined as: (1) the pairwise linear correlation coefficient
between UNIFAC predictions and the polynomial fit is
greater than 0.99 or (2) when there is no significant decrease
in the sum of the square of the residuals as the degree of
polynomial is increased. The cutoff value used for the
second criteria was set to 10−4.

Following this, the polynomial for(βB,A(x′

B)xw) was de-
rived by choosing a slice from the surface displayed in Fig.1
as a function ofx′

B. The value ofxw chosen to define the lo-
cation of this slice is that which corresponds to the maximum
value of(αB,A(xw)xA→0). Subsequent values of1lnfA as a
function ofx′

B are then normalised to this value to give us the
scaling factors used to derive(βB,A(x′

B)xw).

The order of the polynomial chosen is defined using the
same procedure outlined above. Using this approach it is
possible to use less computationally expensive polynomials,
whilst retaining accuracy, as compared to pre-defined poly-
nomial orders for each case (e.g. a 5th order polynomial for
each value of(βB,A(x′

B)xw) and (αB,A(xw)xA→0)). For ex-
ample, each variable might be adequately represented by a
cubic and quadratic expression. On the other hand, it is pos-
sible to pre-define the order of each polynomial to further aid
computational performance whilst accepting a set decrease
in overall accuracy. For example, it may be desirable to re-
strict the order of(βB,A(x′

i)xw) to a linear expression such

Geosci. Model Dev., 5, 1–13, 2012 www.geosci-model-dev.net/5/1/2012/
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Fig. 4. Comparing binary/ternary PD-FiTE and UNIFAC for a random specific testcase. Each subplot
represents a specific RH. Linear correlation coefficients are given in each subplot title. ’Rb’ and ’Rt’
are the correlation coefficients for the binary and ternary model respectively. For this specific example,
the compounds with the largest deviations from the binary model are 3,4,7,8,9 and 10.The compound
numbers and SMILES strings are listed in Table 1 and average percentage deviations in Table 4.

33

Fig. 4. Comparing binary/ternary PD-FiTE and UNIFAC for a random specific testcase. Each subplot represents a specific RH. Linear
correlation coefficients are given in each subplot title. ’Rb’ and ’Rt’ are the correlation coefficients for the binary and ternary model,
respectively. For this specific example, the compounds with the largest deviations from the binary model are 3, 4, 7, 8, 9 and 10. The
compound numbers and SMILES strings are listed in Table 1 and average percentage deviations in Table 4.

that the direction of1lnfA is at least captured. In applying
the framework to a specific set of compounds in Sect.4, the
automated procedure is used. For binary activity coefficients
lnf o

A(xw), the same automated procedure is used.

3.2 Calculating water content

For calculating water content, thus mole fractions in solution,
the ZSR mixing rule is used (Zdanovskii, 1936). This method
has been reviewed extensively in the literature and therefore
not analysed here. Using ZSR, the water content associated
with each compound at a specific relative humidity is added
together to calculate the water content of the mixture:

wt (RH) =

N∑
i=1

wi(RH) (16)

where the individual water contents are fit to UNIFAC for a
range of water activities (0 to 0.99). The mole fraction of
water associated with each solutexwi

(RH) is fit to the UNI-
FAC model to ensure a well behaved polynomial fit (rather
than absolute water content). The water content associated

with each solute can then be calculated using the following
expression:

wi(RH) = nixwi(RH)/(1−xwi(RH)) (17)

whereni is the number of moles of solutei.

4 Benchmarking PD-FiTE against UNIFAC

In the following section Eq. (13) is applied to a specific set of
compounds and benchmarked against the UNIFAC model.

Barley et al. (2011) recently presented the sensitivity
of predicted aerosol mass and chemical signatures, such
as Oxygen:Carbon ratio and average molecular weight, to
choice of predictive technique used within absorptive par-
titioning calculations. In that study, a gas phase degrada-
tion mechanism, the Master Chemical Mechanism (MCM),
was used to simulate the gas phase abundance of 2700 com-
pounds for various anthropogenic and biogenic scenarios
(Jenkin et al., 1997). Here we use the same simulations and
average the contribution of individual components to the pre-
dicted condensed phase abundance, across all conditions, in

www.geosci-model-dev.net/5/1/2012/ Geosci. Model Dev., 5, 1–13, 2012
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Table 1. Compound identification for fitting as presented within the Master Chemical Mechanism (Jenkin et al., 1997).

Compound MCM SMILES C H O N Cl Structure
number number

1 3442 OC(=O)C=CC(=O)O 4 4 4 0 0

Table 1. Compound identification for fitting as presented within the Master Chemical Mecha-
nism (Jenkin et al , 1997).

Compound MCM SMILES C H O N Cl Structure
number number

1 3442 OC(=O)C=CC(=O)O 4 4 4 0 0

2 4823 OCC(C(ON(=O)=O)(C)C)CC(=O)C(O)=O 8 13 7 1 0

3 4610 OOC1(CCC2C(C1C2)(C)C)CO 10 18 3 0 0

4 4855 CC1(C)C(CON(=O)=O)CC1C(O)=O 8 13 5 1 0

5 2635 C(O)C1C(C(C(C)=O)(C1)OO)(C)C 9 16 4 0 0

6 4834 OOC1(CC(CO)C1(C)C)C(=O)O 8 14 5 0 0

7 4608 CC1(C2CCC(CO)(C1C2)ON(=O)=O)C 10 17 4 1 0

8 4435 OOC1C2(OOC(C2O)(C=C1C)CC)C 10 16 5 0 0

9 4830 CC1(C)C(CC1CC(=O)OON(=O)=O)C(=O)O 9 13 7 1 0

10 2605 C12C(C(CC(C1(C)OO)O)C2)(C)C 10 18 3 0 0

11 2617 CC(C(CC(CO)C(C)(ON(=O)=O)C)=O)=O 9 15 6 1 0

12 5482 OC(C(CO)OO)(C)C 5 12 4 0 0

13 3447 OC(=O)C(=O)C(O)C(=O)O 4 4 6 0 0

22

2 4823 OCC(C(ON(=O)=O)(C)C)CC(=O)C(O)=O 8 13 7 1 0
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8 4435 OOC1C2(OOC(C2O)(C=C1C)CC)C 10 16 5 0 0

9 4830 CC1(C)C(CC1CC(=O)OON(=O)=O)C(=O)O 9 13 7 1 0

10 2605 C12C(C(CC(C1(C)OO)O)C2)(C)C 10 18 3 0 0

11 2617 CC(C(CC(CO)C(C)(ON(=O)=O)C)=O)=O 9 15 6 1 0

12 5482 OC(C(CO)OO)(C)C 5 12 4 0 0

13 3447 OC(=O)C(=O)C(O)C(=O)O 4 4 6 0 0

22

5 2635 C(O)C1C(C(C(C)=O)(C1)OO)(C)C 9 16 4 0 0

Table 1. Compound identification for fitting as presented within the Master Chemical Mecha-
nism (Jenkin et al , 1997).

Compound MCM SMILES C H O N Cl Structure
number number

1 3442 OC(=O)C=CC(=O)O 4 4 4 0 0

2 4823 OCC(C(ON(=O)=O)(C)C)CC(=O)C(O)=O 8 13 7 1 0

3 4610 OOC1(CCC2C(C1C2)(C)C)CO 10 18 3 0 0

4 4855 CC1(C)C(CON(=O)=O)CC1C(O)=O 8 13 5 1 0

5 2635 C(O)C1C(C(C(C)=O)(C1)OO)(C)C 9 16 4 0 0

6 4834 OOC1(CC(CO)C1(C)C)C(=O)O 8 14 5 0 0

7 4608 CC1(C2CCC(CO)(C1C2)ON(=O)=O)C 10 17 4 1 0

8 4435 OOC1C2(OOC(C2O)(C=C1C)CC)C 10 16 5 0 0

9 4830 CC1(C)C(CC1CC(=O)OON(=O)=O)C(=O)O 9 13 7 1 0

10 2605 C12C(C(CC(C1(C)OO)O)C2)(C)C 10 18 3 0 0

11 2617 CC(C(CC(CO)C(C)(ON(=O)=O)C)=O)=O 9 15 6 1 0

12 5482 OC(C(CO)OO)(C)C 5 12 4 0 0

13 3447 OC(=O)C(=O)C(O)C(=O)O 4 4 6 0 0

22

6 4834 OOC1(CC(CO)C1(C)C)C(=O)O 8 14 5 0 0

Table 1. Compound identification for fitting as presented within the Master Chemical Mecha-
nism (Jenkin et al , 1997).

Compound MCM SMILES C H O N Cl Structure
number number

1 3442 OC(=O)C=CC(=O)O 4 4 4 0 0

2 4823 OCC(C(ON(=O)=O)(C)C)CC(=O)C(O)=O 8 13 7 1 0

3 4610 OOC1(CCC2C(C1C2)(C)C)CO 10 18 3 0 0

4 4855 CC1(C)C(CON(=O)=O)CC1C(O)=O 8 13 5 1 0

5 2635 C(O)C1C(C(C(C)=O)(C1)OO)(C)C 9 16 4 0 0

6 4834 OOC1(CC(CO)C1(C)C)C(=O)O 8 14 5 0 0

7 4608 CC1(C2CCC(CO)(C1C2)ON(=O)=O)C 10 17 4 1 0

8 4435 OOC1C2(OOC(C2O)(C=C1C)CC)C 10 16 5 0 0

9 4830 CC1(C)C(CC1CC(=O)OON(=O)=O)C(=O)O 9 13 7 1 0

10 2605 C12C(C(CC(C1(C)OO)O)C2)(C)C 10 18 3 0 0

11 2617 CC(C(CC(CO)C(C)(ON(=O)=O)C)=O)=O 9 15 6 1 0

12 5482 OC(C(CO)OO)(C)C 5 12 4 0 0

13 3447 OC(=O)C(=O)C(O)C(=O)O 4 4 6 0 0

22

7 4608 CC1(C2CCC(CO)(C1C2)ON(=O)=O)C 10 17 4 1 0

Table 1. Compound identification for fitting as presented within the Master Chemical Mecha-
nism (Jenkin et al , 1997).

Compound MCM SMILES C H O N Cl Structure
number number

1 3442 OC(=O)C=CC(=O)O 4 4 4 0 0

2 4823 OCC(C(ON(=O)=O)(C)C)CC(=O)C(O)=O 8 13 7 1 0

3 4610 OOC1(CCC2C(C1C2)(C)C)CO 10 18 3 0 0

4 4855 CC1(C)C(CON(=O)=O)CC1C(O)=O 8 13 5 1 0

5 2635 C(O)C1C(C(C(C)=O)(C1)OO)(C)C 9 16 4 0 0

6 4834 OOC1(CC(CO)C1(C)C)C(=O)O 8 14 5 0 0

7 4608 CC1(C2CCC(CO)(C1C2)ON(=O)=O)C 10 17 4 1 0

8 4435 OOC1C2(OOC(C2O)(C=C1C)CC)C 10 16 5 0 0

9 4830 CC1(C)C(CC1CC(=O)OON(=O)=O)C(=O)O 9 13 7 1 0

10 2605 C12C(C(CC(C1(C)OO)O)C2)(C)C 10 18 3 0 0

11 2617 CC(C(CC(CO)C(C)(ON(=O)=O)C)=O)=O 9 15 6 1 0

12 5482 OC(C(CO)OO)(C)C 5 12 4 0 0

13 3447 OC(=O)C(=O)C(O)C(=O)O 4 4 6 0 0

22

8 4435 OOC1C2(OOC(C2O)(C=C1C)CC)C 10 16 5 0 0

Table 1. Compound identification for fitting as presented within the Master Chemical Mecha-
nism (Jenkin et al , 1997).

Compound MCM SMILES C H O N Cl Structure
number number

1 3442 OC(=O)C=CC(=O)O 4 4 4 0 0

2 4823 OCC(C(ON(=O)=O)(C)C)CC(=O)C(O)=O 8 13 7 1 0

3 4610 OOC1(CCC2C(C1C2)(C)C)CO 10 18 3 0 0

4 4855 CC1(C)C(CON(=O)=O)CC1C(O)=O 8 13 5 1 0

5 2635 C(O)C1C(C(C(C)=O)(C1)OO)(C)C 9 16 4 0 0

6 4834 OOC1(CC(CO)C1(C)C)C(=O)O 8 14 5 0 0

7 4608 CC1(C2CCC(CO)(C1C2)ON(=O)=O)C 10 17 4 1 0

8 4435 OOC1C2(OOC(C2O)(C=C1C)CC)C 10 16 5 0 0

9 4830 CC1(C)C(CC1CC(=O)OON(=O)=O)C(=O)O 9 13 7 1 0

10 2605 C12C(C(CC(C1(C)OO)O)C2)(C)C 10 18 3 0 0

11 2617 CC(C(CC(CO)C(C)(ON(=O)=O)C)=O)=O 9 15 6 1 0

12 5482 OC(C(CO)OO)(C)C 5 12 4 0 0

13 3447 OC(=O)C(=O)C(O)C(=O)O 4 4 6 0 0

22

9 4830 CC1(C)C(CC1CC(=O)OON(=O)=O)C(=O)O 9 13 7 1 0

Table 1. Compound identification for fitting as presented within the Master Chemical Mecha-
nism (Jenkin et al , 1997).

Compound MCM SMILES C H O N Cl Structure
number number

1 3442 OC(=O)C=CC(=O)O 4 4 4 0 0

2 4823 OCC(C(ON(=O)=O)(C)C)CC(=O)C(O)=O 8 13 7 1 0

3 4610 OOC1(CCC2C(C1C2)(C)C)CO 10 18 3 0 0

4 4855 CC1(C)C(CON(=O)=O)CC1C(O)=O 8 13 5 1 0

5 2635 C(O)C1C(C(C(C)=O)(C1)OO)(C)C 9 16 4 0 0

6 4834 OOC1(CC(CO)C1(C)C)C(=O)O 8 14 5 0 0

7 4608 CC1(C2CCC(CO)(C1C2)ON(=O)=O)C 10 17 4 1 0

8 4435 OOC1C2(OOC(C2O)(C=C1C)CC)C 10 16 5 0 0

9 4830 CC1(C)C(CC1CC(=O)OON(=O)=O)C(=O)O 9 13 7 1 0

10 2605 C12C(C(CC(C1(C)OO)O)C2)(C)C 10 18 3 0 0

11 2617 CC(C(CC(CO)C(C)(ON(=O)=O)C)=O)=O 9 15 6 1 0

12 5482 OC(C(CO)OO)(C)C 5 12 4 0 0

13 3447 OC(=O)C(=O)C(O)C(=O)O 4 4 6 0 0

22

10 2605 C12C(C(CC(C1(C)OO)O)C2)(C)C 10 18 3 0 0

Table 1. Compound identification for fitting as presented within the Master Chemical Mecha-
nism (Jenkin et al , 1997).

Compound MCM SMILES C H O N Cl Structure
number number

1 3442 OC(=O)C=CC(=O)O 4 4 4 0 0

2 4823 OCC(C(ON(=O)=O)(C)C)CC(=O)C(O)=O 8 13 7 1 0

3 4610 OOC1(CCC2C(C1C2)(C)C)CO 10 18 3 0 0

4 4855 CC1(C)C(CON(=O)=O)CC1C(O)=O 8 13 5 1 0

5 2635 C(O)C1C(C(C(C)=O)(C1)OO)(C)C 9 16 4 0 0

6 4834 OOC1(CC(CO)C1(C)C)C(=O)O 8 14 5 0 0

7 4608 CC1(C2CCC(CO)(C1C2)ON(=O)=O)C 10 17 4 1 0

8 4435 OOC1C2(OOC(C2O)(C=C1C)CC)C 10 16 5 0 0

9 4830 CC1(C)C(CC1CC(=O)OON(=O)=O)C(=O)O 9 13 7 1 0

10 2605 C12C(C(CC(C1(C)OO)O)C2)(C)C 10 18 3 0 0

11 2617 CC(C(CC(CO)C(C)(ON(=O)=O)C)=O)=O 9 15 6 1 0

12 5482 OC(C(CO)OO)(C)C 5 12 4 0 0

13 3447 OC(=O)C(=O)C(O)C(=O)O 4 4 6 0 0

22

11 2617 CC(C(CC(CO)C(C)(ON(=O)=O)C)=O)=O 9 15 6 1 0

Table 1. Compound identification for fitting as presented within the Master Chemical Mecha-
nism (Jenkin et al , 1997).

Compound MCM SMILES C H O N Cl Structure
number number

1 3442 OC(=O)C=CC(=O)O 4 4 4 0 0

2 4823 OCC(C(ON(=O)=O)(C)C)CC(=O)C(O)=O 8 13 7 1 0

3 4610 OOC1(CCC2C(C1C2)(C)C)CO 10 18 3 0 0

4 4855 CC1(C)C(CON(=O)=O)CC1C(O)=O 8 13 5 1 0

5 2635 C(O)C1C(C(C(C)=O)(C1)OO)(C)C 9 16 4 0 0

6 4834 OOC1(CC(CO)C1(C)C)C(=O)O 8 14 5 0 0

7 4608 CC1(C2CCC(CO)(C1C2)ON(=O)=O)C 10 17 4 1 0

8 4435 OOC1C2(OOC(C2O)(C=C1C)CC)C 10 16 5 0 0

9 4830 CC1(C)C(CC1CC(=O)OON(=O)=O)C(=O)O 9 13 7 1 0

10 2605 C12C(C(CC(C1(C)OO)O)C2)(C)C 10 18 3 0 0

11 2617 CC(C(CC(CO)C(C)(ON(=O)=O)C)=O)=O 9 15 6 1 0

12 5482 OC(C(CO)OO)(C)C 5 12 4 0 0

13 3447 OC(=O)C(=O)C(O)C(=O)O 4 4 6 0 0

22

12 5482 OC(C(CO)OO)(C)C 5 12 4 0 0

Table 1. Compound identification for fitting as presented within the Master Chemical Mecha-
nism (Jenkin et al , 1997).

Compound MCM SMILES C H O N Cl Structure
number number

1 3442 OC(=O)C=CC(=O)O 4 4 4 0 0

2 4823 OCC(C(ON(=O)=O)(C)C)CC(=O)C(O)=O 8 13 7 1 0

3 4610 OOC1(CCC2C(C1C2)(C)C)CO 10 18 3 0 0

4 4855 CC1(C)C(CON(=O)=O)CC1C(O)=O 8 13 5 1 0

5 2635 C(O)C1C(C(C(C)=O)(C1)OO)(C)C 9 16 4 0 0

6 4834 OOC1(CC(CO)C1(C)C)C(=O)O 8 14 5 0 0

7 4608 CC1(C2CCC(CO)(C1C2)ON(=O)=O)C 10 17 4 1 0

8 4435 OOC1C2(OOC(C2O)(C=C1C)CC)C 10 16 5 0 0

9 4830 CC1(C)C(CC1CC(=O)OON(=O)=O)C(=O)O 9 13 7 1 0

10 2605 C12C(C(CC(C1(C)OO)O)C2)(C)C 10 18 3 0 0

11 2617 CC(C(CC(CO)C(C)(ON(=O)=O)C)=O)=O 9 15 6 1 0

12 5482 OC(C(CO)OO)(C)C 5 12 4 0 0

13 3447 OC(=O)C(=O)C(O)C(=O)O 4 4 6 0 0

22

13 3447 OC(=O)C(=O)C(O)C(=O)O 4 4 6 0 0

Table 1. Compound identification for fitting as presented within the Master Chemical Mecha-
nism (Jenkin et al , 1997).

Compound MCM SMILES C H O N Cl Structure
number number

1 3442 OC(=O)C=CC(=O)O 4 4 4 0 0

2 4823 OCC(C(ON(=O)=O)(C)C)CC(=O)C(O)=O 8 13 7 1 0

3 4610 OOC1(CCC2C(C1C2)(C)C)CO 10 18 3 0 0

4 4855 CC1(C)C(CON(=O)=O)CC1C(O)=O 8 13 5 1 0

5 2635 C(O)C1C(C(C(C)=O)(C1)OO)(C)C 9 16 4 0 0

6 4834 OOC1(CC(CO)C1(C)C)C(=O)O 8 14 5 0 0

7 4608 CC1(C2CCC(CO)(C1C2)ON(=O)=O)C 10 17 4 1 0

8 4435 OOC1C2(OOC(C2O)(C=C1C)CC)C 10 16 5 0 0

9 4830 CC1(C)C(CC1CC(=O)OON(=O)=O)C(=O)O 9 13 7 1 0

10 2605 C12C(C(CC(C1(C)OO)O)C2)(C)C 10 18 3 0 0

11 2617 CC(C(CC(CO)C(C)(ON(=O)=O)C)=O)=O 9 15 6 1 0

12 5482 OC(C(CO)OO)(C)C 5 12 4 0 0

13 3447 OC(=O)C(=O)C(O)C(=O)O 4 4 6 0 0

22
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Table 2. Polynomials for binary activity coefficient: lnγ o
i

= A(0)∗xorder
w +A(1)∗xorder−1

w ..[order= polynomialorder].

Number A(0) A(1) A(2) A(3) A(4) A(5) A(6)

1 −0.680844 −0.030474 0.013327
2 18.342261 −36.865487 26.174686 −8.565417 0.962597 −0.027869
3 150.945646 −382.149648 369.674775 −168.512416 34.234823 −3.179822 0.070701
4 283.084624 −718.473072 695.657994 −313.71093 63.550996 −6.148153 0.136931
5 76.065039 −149.766159 109.111489 −33.639646 3.971213 −0.115294
6 203.421677 −520.253952 506.342017 −230.816455 46.618829 −4.442629 0.099128
7 74.2173 −154.863304 114.946223 −39.048428 4.340771 −0.127665
8 130.648433 −266.724081 199.936973 −63.122582 6.558979 −0.196416
9 274.762453 −697.581434 675.811261 −304.968978 61.546109 −5.961812 0.132819
10 85.387073 −168.601696 122.96918 −37.927336 4.48584 −0.130329
11 279.043008 −700.756563 677.314976 −307.85783 66.107566 −5.767339 0.128072
12 185.68401 −472.462525 458.242015 −208.337606 43.242955 −4.003782 0.089179
13 7.850520 −12.415950 2.418568 −0.159090

Table 3. Polynomials for water content: logxo
wi

= B(0)∗(RH/100)order
+B(1)∗(RH/100)order−1.

Number B(0) B(1) B(2) B(3) B(4) B(5)

1 0.698628 −1.323814 1.613212 0.011863
2 10.662119 −26.324362 24.742614 −11.236877 3.157528 0.010876
3 −0.115537 0.611441 0.186311
4 0.068333 0.349236 0.00778
5 11.43086 −28.25637 26.452844 −11.848405 3.162267 0.064647
6 1.739359 −2.316106 0.348312 0.995024 0.229408 0
7 −0.068518 0.380027 0.079231
8 0.504267 −0.940167 0.995198 0.15628
9 0.051517 0.327142 0.005692
10 0.030421 0.291476 0.002831
11 15.217185 −36.994166 33.593312 −14.219615 3.481905 −0.063397
12 1.153276 −1.88062 1.487633 0.232988
13 0.93933 −1.842135 1.737631 0.164816

order to extract a subset of compounds to be used as an ex-
ample on the applicability of PD-FiTE. The resulting com-
pounds defined in that study are listed in Table1 along with
their SMILES string, compound identification number as de-
fined within the MCM and chemical structure. Specific de-
tails regarding the selection methodology are presented in
Appendix A. The simplified molecular input line entry spec-
ification or SMILES is a specification for unambiguously
describing the structure of chemical molecules using short
ASCII strings. Each compound SMILES representation was
translated into appropriate UNIFAC functional groups using
the PyBel toolbox (O’Boyle et al., 2008) and a complete
set of SMARTS to represent theHansen et al.(1991) UNI-
FAC matrix. For a more detailed discussion of SMILES and
SMARTS, the reader is referred to the Daylight Chemical
Information systems webpage (www.daylight.com). To il-
lustrate the use of Eq. (13), the polynomials used to calculate

the binary activity coefficient and water content of each com-
pound are listed in Tables2 and3 respectively. An example
subset of the polynomials used to calculate interactions be-
tween each solute pair are given in Appendix B.

To illustrate the behaviour of compounds listed in Table1,
Figs. 2 and 3 show surface plots of1lnf1 as a function
of x′

B andxw for two separate ternary mixtures with com-
pounds “3” and “4”. As the ‘dry’ mole fraction of solute
“B”, or compounds “3” and “4” approach zero, the value of
1lnf1 tends to zero for all concentrations of water. Whilst
the presence of solute “3” always decreases lnf1 relative to
a binary solution of only solute “1” in water, the presence
of solute “4” can increase or decrease lnf1 depending on the
concentration of water. As described in Sect.2, each sur-
face is used to fit the interaction parameters(βB,A(x′

B)xw)

and(αB,A(xw)xA→0) between each binary pair of solutes.

www.geosci-model-dev.net/5/1/2012/ Geosci. Model Dev., 5, 1–13, 2012
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Fig. 5. Ratio of activity coefficients predicted by PD-FiTE to UNIFAC as a function of RH. Blue boxes
correspond to PD-FiTE binary and cyan to PD-FiTE ternary. Using the MATLAB R2008a software
package, the box represents the upper/lower quartile range with the median highlighted inbetween. The
whiskers represent values within the 10 and 90 percentile boundaries, outliers representing any values
greater than 1.5 times the inter-quartile range.

34

Fig. 5. Ratio of activity coefficients predicted by PD-FiTE to UNI-
FAC as a function of RH. Blue boxes correspond to PD-FiTE bi-
nary and cyan to PD-FiTE ternary. Using the MATLAB R2008a
software package, the box represents the upper/lower quartile range
with the median highlighted inbetween. The whiskers represent val-
ues within the 10 and 90 percentile boundaries, outliers representing
any values greater than 1.5 times the inter-quartile range.

Fig. 6. Cumulative CPU time for each 100’th call of each activity coefficient model. Two variations of
the UNIFAC model correspond to using the same water content as calculated in PD-FiTE (using ZSR
“WZSR” and using an iterative solver).

35

Fig. 6. Cumulative CPU time for each 100’th call of each activity
coefficient model. Two variations of the UNIFAC model correspond
to using the same water content as calculated in PD-FiTE (using
ZSR “WZSR” and using an iterative solver).

To benchmark PD-FiTE, the original UNIFAC model is
used with the updated parameters ofPeng et al.(2001). The
version of PD-FiTE defined by Eq. (13) is hereafter referred
to as “PD-FiTE-ternary” as it account for interactions be-
tween binary pairs of solutes in water. Comparisons are also
made with PD-FiTE assuming that all solute-solute interac-
tions can be set to zero such that the summation term in
Eq. (13) is not used. This variant shall hereafter be referred to
“PD-FiTE-binary” as it represents individual solutes in wa-

Table 4. Average percentage deviations between PD-FiTE and
UNIFAC. Statistics averaged across 100 random initializations at
ten relative humidities (10, 20, 30, 40, 50, 60, 70, 80, 90, 99 %),
providing 1000 datapoints.

Compound Binary Ternary
number PD-FiTE PD-FiTE

1 19.45440718 −14.30912809
2 2.673215656 6.101359896
3 −47.36864158 −3.702870758
4 −53.60107768 18.70554837
5 52.25168852 21.06698518
6 20.46580233 −2.837865435
7 −73.25882432 2.225730891
8 −44.90977498 −7.648612446
9 −58.64378672 21.61434862
10 −77.72342066 1.873670474
11 41.95350378 39.9819442
12 15.37105714 14.5210335
13 −33.46446243 −27.46755099

Overall −16.12413131 3.807365426

Table 5. Mixing ratios (ppt) of each compound used within the
dynamical simulation.

Compound Gas phase
Number abundance

1 2.5× 100

2 6.8× 10−4

3 4.8× 10−5

4 3.5× 10−2

5 7.1× 10−4

6 3.3× 10−5

7 2.0× 10−1

8 5.2× 10−5

9 7.1× 10−2

10 1.3× 10−5

11 5.8× 10−3

12 8.5× 10−4

13 1.3× 10−3

ter. An analysis of the accuracy of both approaches is impor-
tant since “PD-FiTE-binary” is less computational expensive
than “PD-FiTE-ternary” as discussed in Sect.5. Pre-defining
concentrations of inorganic compounds to benchmark the
model for a range of typical environments is relatively easy,
(Zaveri et al., 2005). For organic compounds, however, this
is less clear. For this reason, in this study, concentrations of
each compound in Table1 were randomly generated using
uniformly distributed pseudorandom numbers in the MAT-
LAB software package 7.6.0 (R2008a). In total, 100 relative

Geosci. Model Dev., 5, 1–13, 2012 www.geosci-model-dev.net/5/1/2012/
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Table 6. Polynomials representing interactions between solute “A”
(compound “1” in Table1) and solutes “B” (compounds 3, 4 and
5 in Table1), where “A” tends to zero;(αB,A(xw)xA→0) = C(0)∗

xorder
w +C(1)∗xorder−1

w ..[order= polynomial order].

Solute “B” C(0) C(1) C(2) C(3) C(4) C(5) C(6)

3 −8.564 15.172 −5.018 0.263 −0.977
4 −19.872 30.857 −10.779 0.996 0.666
5 −19.718 28.945 −12.553 3.13 0.959

Table 7. Polynomials representing interactions between so-
lute “A” (compound ’1’ in Table 1) and solutes “B” (com-
pounds 3, 4 and 5 in Table1), for a specific concentration of
water as “B” changes;(βB,A(x′

B)xw) = D(0) ∗ x′

Border + D(1) ∗

x′

Border−1..[order= polynomial order].

Solute “B” D(0) D(1) D(2) D(3) D(4) D(5) D(6)

3 1.416 −0.455 0.01
4 0.405 0.593 0.001
5 0.229 0.771 0.0004

concentrations for each compound were derived using the
Mersenne Twister algorithm. For each concentration the rel-
ative humidity was varied between 10 to 99 %, resulting in
a different water content calculated using the ZSR rule. For
comparisons with the UNIFAC model the same water con-
tent was used. Some overall statistics are discussed before
individual compound analysis is given.

Figure 4 displays scatter plots for both the binary and
ternary version of PD-FiTE versus UNIFAC for four dif-
ferent relative humidities (10, 30, 60 and 90 %). Taking
the 10 % RH case, ternary PD-FiTE clearly correlates bet-
ter with UNIFAC than binary PD-FiTE, as confirmed by the
Pearson squared correlation coefficients (0.96 and 0.40, re-
spectively). The performance of binary PD-FiTE decreases
as the activity coefficients increase. This is to be expected
as the highly non-linear influence of multiple solutes is not
captured within the binary framework. As the relative hu-
midity increases the correlation coefficient of both variants
improves. Figure5 plots the ratio of predictions from both
binary and ternary PD-FiTE as compared to UNIFAC across
100 sets of simulations at 10 different relative humidities.
The ternary model is clearly more accurate than the binary
variant, with median values always within±20 % across
all relative humidity ranges. Predictions from binary PD-
FiTE lie across a much broader distribution with deviations
as low as−40 % and as high as +70 % in the inter-quartile
range. Table4 provides average deviations for each indi-
vidual compound across all simulations and relative humidi-
ties. Whilst some detail provided by Figs.4 and 5 is lost
within the average statistics, average percentage deviations
from ternary PD-FiTE are smaller than those from binary
PD-FiTE. For example, for compound 7 used in this study,

and listed in Table4, the percentage deviation on changing
from the ternary to the binary model can increase from 2.2 %
to −73.3 %. Multiple outliers have influenced the derivation
of mean values which should be combined with the distribu-
tions presented in Fig.5. Overall, binary PD-FiTE is statis-
tically less accurate than ternary PD-FiTE with total average
deviations of−16.12 % and 3.8 %, respectively.

5 Computational performance

Figure6 displays the cumulative CPU time in seconds after
each set of 100 calls to both PD-FiTE (binary and ternary)
and UNIFAC for the 100 sets of simulations described in
Sect.4. Whilst a comparison of the number of floating point
operations might be advantageous, this is difficult to attribute
to an iterative approach using UNIFAC. There are two lines
representing UNIFAC: the first represents the use of water
contents calculated using the ZSR approach within PD-FiTE,
the second represents an iterative solution for both water con-
tents and activity coefficients. No code was parallelised for
this comparison. All routines were written in the Matlab
software package which was run on a windows XP machine
(2.66 Ghz Intel dual core, 2GB RAM). In each case, the fixed
parameters within the model were saved to memory at the
first call. Given the number of permutations in ternary PD-
FiTE this significantly reduces run time. The binary version
of PD-FiTE is the most efficient method, as to be expected.
The order of the polynomials used to represent interactions
within the ternary PD-FiTE model are optimised during the
fitting process. Therefore it is difficult to directly relate the
generic increase in computational cost of the ternary method
over the binary method. For the compounds analysed in this
study, ternary PD-FiTE is less efficient than the binary vari-
ant by a factor of≈6, as indicated in Fig.6. However, both
ternary and binary PD-FiTE are up to a factor of≈12 and
≈66 times more efficient than calling the UNIFAC model
using the same water content, and≈310 and≈1800 times
more efficient than an iterative model using UNIFAC.

6 Dynamical testcases

As a demonstration of the usefulness of PD-FiTE in describ-
ing the role of variation of particle composition in the dy-
namical evolution of an aerosol population, the code has been
incorporated into a model describing the explicit disequilib-
rium mass transfer of semivolatile species to a developing
aerosol size distribution (Microphysical Aerosol Numerical
model Incorporating Chemistry,Lowe et al., 2009), using the
same example compounds defined in Sect.4. For illustration
and clarity of explanation, no gas- or condensed-phase re-
actions are considered. The gas-phase mixing ratios of the
semivolatile species are all initialised at zero, increased si-
nusoidally to their maximum values over a period of 12 h,
then decreased again to zero over another 12 h. Uptake of
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Fig. 7. Evolving condensed phase abundance and gas phase concentration for compound “8” as a func-
tion of time, assuming ideality (a and b) and using PD-FiTE (c and d). Panels (a) and (c) show the
size-resolved differences between vapour pressure (VP) over aerosol particles and the gas-phase partial
pressure (PP) (red indicates higher partial pressures; blue indicates higher vapor pressures), as well as
the temporal variation in the partial pressure of compound “8” (black line). Panels (b) and (d) show the
size-resolved dry mole fractions of compound “8” within the condensed-phase.
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and using PD-FiTE (c andd). Panels(a) and(c) show the size-resolved differences between vapour pressure (VP) over aerosol particles
and the gas-phase partial pressure (PP) (red indicates higher partial pressures; blue indicates higher vapor pressures), as well as the temporal
variation in the partial pressure of compound “8” (black line). Panels(b) and(d) show the size-resolved dry mole fractions of compound “8”
within the condensed-phase.
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Fig. 8. Evolving condensed phase abundance and gas phase concentration for compound “12” as a
function of time, assuming ideality (a and b) and using PD-FiTE (c and d). Panels (a) and (c) show the
size-resolved differences between vapour pressure (VP) over aerosol particles and the gas-phase partial
pressure (PP) (red indicates higher partial pressures; blue indicates higher vapor pressures), as well as
the temporal variation in the partial pressure of compound “12” (black line). Panels (b) and (d) show the
size-resolved dry mole fractions of compound “12” within the condensed-phase.
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Fig. 8. Evolving condensed phase abundance and gas phase concentration for compound “12” as a function of time, assuming ideality
(a andb) and using PD-FiTE (c andd). Panels(a) and(c) show the size-resolved differences between vapour pressure (VP) over aerosol
particles and the gas-phase partial pressure (PP) (red indicates higher partial pressures; blue indicates higher vapor pressures), as well as the
temporal variation in the partial pressure of compound “12” (black line). Panels(b) and(d) show the size-resolved dry mole fractions of
compound “12” within the condensed-phase.
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semivolatile species to the condensed-phase does not deplete
the gas-phase mixing ratios. The maximum mixing ratios,
taken from an online box model simulation using the MCM
are given in Table5 .

The condensed phase consists of 1 aerosol distribution,
comprised of 64 individual size-sections. Particle growth
across the size-sections within each mode is dealt with us-
ing the Moving Centre method. The aerosol distribution is
initialised with 2 log-normal modes, each with a represen-
tative involatile core (hereafter referred to as compounds 14
and 15, used to represent primary and heavily oygenated or-
ganic aerosol). The first log-normal mode has a mode radius
of 0.2 µm, width of 1.7, and total particle number of 10 cm−3

air ;
the second has a mode radius of 0.02 µm, width of 2.0, and
total particle number of 2000 cm−3

air . The total dry aerosol
mass is 3.5 µg m−3

air , temperature is 285.15 K, and relative hu-
midity is 75 %. These compounds are used purely as a way
to initialise an existing aerosol distribution, the functionality
of compound 15, was assumed to be that reported for fulvic
acid (Topping et al., 2005).

The testcase was run twice: (1) assuming ideality, and
(2) using PD-FiTE to calculate activity coefficients over 24 h
(model time). Semivolatile partitioning is driven by the
difference between atmospheric partial pressure and vapour
pressure of the species over the condensed-phase. The size-
resolved vapour pressure differences for each of the 13 semi-
volatile species, as well as the size-resolved dry mole frac-
tions for each of the 15 condensed-phase species are pro-
vided as supplementary material; for brevity, however, we
will only examine the behaviour of two compounds: Com-
pound “8” (Fig.7); and Compound “12” (Fig.8) which ex-
hibit positive and negative deviations from ideality respec-
tively. In Figs. 7 and 8 the coloured surface plots show
the differences between partial pressure and vapour pressure
across the size ranges of the two aerosol modes for each
semivolatile gas species (plotted as the difference in atmo-
spheres; red indicates higher partial pressures; blue indicates
higher vapour pressures). The black lines show the abso-
lute gas phase concentrations of each semivolatile gas species
during the model run.

Compound “12” is the dominate condensed-phase semi-
volatile species in this example (Compound “1” has a higher
partial pressure, but is also more volatile, and so does not
contribute as much to the condensed phase), with a dry
mole fraction close to 0.35 at 12 h across the majority of the
aerosol distribution in the ideal testcase (Fig.7b). Pressure
differences are highest over the largest particles (Fig.7a);
with diffusion controlled condensation rates these large par-
ticles never achieve equilibrium with the gas-phase. The in-
troduction of non-ideality greatly increases the volatility of
compound “12”, decreasing the vapour pressures over all
particles sizes (Fig.7c) and reducing the dry mole fraction
maxima to≈0.1 (Fig.7d).

Compound “5” has a lower abundance than compound
“12”, but is also less volatile, and so reaches a dry mole
fraction of ≈0.025 at 12 h in the ideal testcase (Fig.8b).
The lower volatility causes greater pressure differences over
more of the particle size distribution (Fig.8a), leading to the
mole fraction in the smaller particles to continue increasing
(leading to greater composition gradients across the particle
size-range). Non-ideality greatly decreases the volatility of
compound “12”, increasing the vapour pressure differences
(Fig. 8c), which leads to an increase in the dry mole fraction
maxima to≈0.065 at 12 h (Fig.8d).

This simulation demonstrates the ability of PD-FiTE to
be used stably in dynamical simulations of multicomponent
aerosol evolution in a changing gaseous environment. Whilst
it is difficult to derive generalised conclusions to one exam-
ple dynamical testcase, it is interesting to observe both the
positive and negative deviations from ideality resulting from
interactions taking place in solution. This was also found
by Barley et al.(2011) who performed a much broader as-
sessment of the sensitivity to non-ideality within an equilib-
rium framework. This demonstrates the potential inaccuracy
in prescribing fixed negative or positive deviations from ide-
ality when modelling the evolving chemical composition of
aerosol particles.

7 Conclusions and future work

A simple, flexible mixing rule is presented which allows the
calculation of activity coefficients, thus equilibrium vapour
pressures, of organic condensates above a multi-component
aqueous solution. Based on the same fitting methodology as
a previously published inorganic model (PD-FiTE), organic
PD-FiTE treats interactions between binary pairs of solutes
with variable sets of polynomials. Using 13 compounds ex-
tracted from an example gas phase degradation mechanism,
the framework is benchmarked against the UNIFAC model.
For 1000 randomly derived concentration ranges and 10 rel-
ative humidities between 10 and 99 %, the average deviation
was calculated to be 3.8 %. Whilst compound specific devi-
ations did vary, the median and inter-quartile values across
all relative humidity range always fell within±20 %. Com-
parisons were also made with organic PD-FiTE by assuming
interactions between solutes can be set to zero. Predictions
from this approach lie across a much broader distribution
with deviations as low as−40 % and as high as +70 % in the
inter-quartile range, with an average deviation of−16.1 %.
The computational cost of both variants was compared to the
use of UNIFAC for the same amounts of water. Both the fully
coupled and uncoupled organic PD-FiTE are up to a factor of
≈12 and≈66 times more efficient than calling the UNIFAC
model using the same water content respectively, and≈310
and≈1800 times more efficient than an iterative model us-
ing UNIFAC. All of the above comparisons assume that the
UNIFAC model is accurate for all compounds studied here.
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Whilst improvements in the accuracy of UNIFAC have been
made and widely implemented, it is difficult to prescribe
complete confidence to predictions from multi-component
solutions across a broad range of concentrations. Focused
laboratory studies are required to validate predictions from
these mixed systems. However, the flexible nature of organic
PD-FiTE allows direct inclusion of any improvements in the
predictive skill of the UNIFAC framework.

The inorganic and organic versions of PD-FiTE currently
remain uncoupled. Since a revised version of the AIMO-
FAC framework has recently been published (Zuend et al.,
2011), a thorough comparison of inorganic and organic PD-
FiTE with this model will form the focus of future work. The
use of organic PD-FiTE within a dynamical framework is
demonstrated, highlighting the potential inaccuracy in pre-
scribing fixed negative or positive deviations from ideality
when modelling the evolving aerosol composition.

Appendix A

Reduction methodology used to select the 13 example
compoundsused to benchmark PD-FiTE

In Barley et al. (2011), Master Chemical Mechanism (Jenkin
et al. (1997)MCM) simulations were conducted in such a
way as to cover a wide range of emission scenarios rep-
resenting high anthropogenic and low biogenic sources as
well as high biogenic and low anthropogenic sources. Emis-
sions representing average UK National Atmospheric Emis-
sions Inventory (NAEI) emission totals for the year 2001
(3740 ktonnes CO, 1130 ktonnes SO2, 1680 ktonnes NOx,
and 1510 ktonnes speciated VOCs with 1330 ktonnes being
anthropogenic AVOCs) were continuously emitted into the
box throughout the model run. Further emission scenar-
ios were simulated by independently multiplying the anthro-
pogenic VOCs (AVOCs), biogenic VOCs (BVOC) and NOx
component of the base case emissions by factors of 0.01, 0.1,
10, 100 and 1000 to give a total of 216 emission scenarios
covering a swing of 6 orders of magnitude in the emitted
concentrations. With such an extreme range in emissions,
ten scenarios gave unrealistically high ozone mixing ratios
(>300 ppb). These scenarios were sensibly removed. For
each emission scenario the partitioning calculation was con-
ducted at a number of temperature, RH and involatile core
mass, giving a set of 24 cases:

– Temperature (K): 273.15, 283.15, 293.15 and 303.15

– RH (%): 0, 50 and 90

– Mass of involatile core (µg m−3): 0.5 and 3.0

Where the involatile core is assumed to interact ideally
with all components and is assigned a molar mass of
320 g mole−1, based on the analysis of water soluble organic
compounds (WSOC) reported by Reemtsma et al. (2006).

The top 13 contributing compounds to SOA using the
Nanoolal VP (Nannoolal et al., 2008) and Tb (Nannoolal
et al., 2004) method were found by averaging across all sce-
narios and all conditions, results displayed in Table 1.

Appendix B

Example set of polynomials used to calculate solute
interactions in PD-FiTE

Described in the main body of text, the activity coefficient of
an organic solute is represented by the expression:

lnfA(x′

B,x′

C,x′

D,...xw) = lnf o
A(xw)+

N∑
i 6=A

(βi,A(x′

i)xw)(αi,A(xw)xA→0) (B1)

As an example, the polynomials for(αB,A(xw)xA→0), deter-
mined by setting the dry mole fraction of “A”,x′

A to a negli-
gible amount (0.0001) are given for compound combinations
3-1, 4-1, 5-1 in Table6. The polynomials for(βB,A(x′

B)xw)

for the same solute combinations are also displayed in Ta-
ble 7. As described in the main body of text,(βB,A(x′

B)xw)

represents a scaling factor for(αB,A(xw)xA→0) as the ratio
of solute “A” to “B” changes. The Matlab implementation of
the PD-FiTE model described in this paper is also provided
as supplementary material with examples given for polyno-
mial coefficients. Written in MATLAB R2008a, only the
core toolboxes are called. Converting from Matlab to Fortran
is relatively straightforward, with a Fortran version available
on request. It will be possible to develop bespoke versions of
PD-FiTE using an online interface which is currently under
development. This will provide multiple language versions
of the PD-FiTE model on request.

Supplementary material related to
this article is available online at:
http://www.geosci-model-dev.net/5/1/2012/
gmd-5-1-2012-supplement.pdf.
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