2,853 research outputs found

    An inquiry-based learning approach to teaching information retrieval

    Get PDF
    The study of information retrieval (IR) has increased in interest and importance with the explosive growth of online information in recent years. Learning about IR within formal courses of study enables users of search engines to use them more knowledgeably and effectively, while providing the starting point for the explorations of new researchers into novel search technologies. Although IR can be taught in a traditional manner of formal classroom instruction with students being led through the details of the subject and expected to reproduce this in assessment, the nature of IR as a topic makes it an ideal subject for inquiry-based learning approaches to teaching. In an inquiry-based learning approach students are introduced to the principles of a subject and then encouraged to develop their understanding by solving structured or open problems. Working through solutions in subsequent class discussions enables students to appreciate the availability of alternative solutions as proposed by their classmates. Following this approach students not only learn the details of IR techniques, but significantly, naturally learn to apply them in solution of problems. In doing this they not only gain an appreciation of alternative solutions to a problem, but also how to assess their relative strengths and weaknesses. Developing confidence and skills in problem solving enables student assessment to be structured around solution of problems. Thus students can be assessed on the basis of their understanding and ability to apply techniques, rather simply their skill at reciting facts. This has the additional benefit of encouraging general problem solving skills which can be of benefit in other subjects. This approach to teaching IR was successfully implemented in an undergraduate module where students were assessed in a written examination exploring their knowledge and understanding of the principles of IR and their ability to apply them to solving problems, and a written assignment based on developing an individual research proposal

    The association of histological and radiological indicators of breast cancer risk.

    Get PDF
    Previous work has shown that extensive mammographic dysplasia in women aged less than 50 was strongly associated with breast cancer but that the radiological appearance of ductal prominence was not associated with risk. In the present paper we examine the association between these mammographic signs in the breast and histological patterns in the terminal ductal lobular unit (TDLU), the region of the breast where breast cancer is believed to originate. Surgical biopsies from a consecutive series of women aged less than 50 were reviewed and classified according to the histopathology of the epithelium in the TDLU. Mammograms from the same subjects were independently classified according to the extent of the radiological signs of dysplasia and ductal prominence. Degree of histopathology and the extent of mammographic dysplasia were associated and atypia of the ductal type was found more frequently in patients with extensive dysplasia. However, the strength and statistical significance of the association varied according to the radiologist who classified the mammograms. No association was found between degree of histopathology and ductal prominence. These results add to the evidence that extensive mammographic dysplasia in women aged less than 50 is a risk factor for breast cancer. They do not indicate that the radiological signs of dysplasia are caused by histological changes in the TDLU

    Target Mass Monitoring and Instrumentation in the Daya Bay Antineutrino Detectors

    Full text link
    The Daya Bay experiment measures sin^2 2{\theta}_13 using functionally identical antineutrino detectors located at distances of 300 to 2000 meters from the Daya Bay nuclear power complex. Each detector consists of three nested fluid volumes surrounded by photomultiplier tubes. These volumes are coupled to overflow tanks on top of the detector to allow for thermal expansion of the liquid. Antineutrinos are detected through the inverse beta decay reaction on the proton-rich scintillator target. A precise and continuous measurement of the detector's central target mass is achieved by monitoring the the fluid level in the overflow tanks with cameras and ultrasonic and capacitive sensors. In addition, the monitoring system records detector temperature and levelness at multiple positions. This monitoring information allows the precise determination of the detectors' effective number of target protons during data taking. We present the design, calibration, installation and in-situ tests of the Daya Bay real-time antineutrino detector monitoring sensors and readout electronics.Comment: 22 pages, 20 figures; accepted by JINST. Changes in v2: minor revisions to incorporate editorial feedback from JINS

    Effective RFID-based object tracking for manufacturing

    Get PDF
    International audienceAbstract Automated Identification and in particular, Radio Frequency Identification (RFID) promises to assist with the automation of mass customised production processes by simplifying the retrieval, tracking and usage of highly specialised components. RFID has long been used to gather a history or trace of object movements, but its use as an integral part of the automated control process is yet to be fully exploited. Such (automated) use places stringent demands on the quality of the sensor data collected and the method used to interpret that data. In particular, this paper focuses on the issue of correctly identifying, tracking and dealing with aggregated objects in customised production with the use of RFID. In particular, this work presents approaches for making best use of RFID data in this context. The presented approach is evaluated in the context of a laboratory manufacturing system that produces customised gift boxes

    Measurement of 222Rn dissolved in water at the Sudbury Neutrino Observatory

    Full text link
    The technique used at the Sudbury Neutrino Observatory (SNO) to measure the concentration of 222Rn in water is described. Water from the SNO detector is passed through a vacuum degasser (in the light water system) or a membrane contact degasser (in the heavy water system) where dissolved gases, including radon, are liberated. The degasser is connected to a vacuum system which collects the radon on a cold trap and removes most other gases, such as water vapor and nitrogen. After roughly 0.5 tonnes of H2O or 6 tonnes of D2O have been sampled, the accumulated radon is transferred to a Lucas cell. The cell is mounted on a photomultiplier tube which detects the alpha particles from the decay of 222Rn and its daughters. The overall degassing and concentration efficiency is about 38% and the single-alpha counting efficiency is approximately 75%. The sensitivity of the radon assay system for D2O is equivalent to ~3 E(-15) g U/g water. The radon concentration in both the H2O and D2O is sufficiently low that the rate of background events from U-chain elements is a small fraction of the interaction rate of solar neutrinos by the neutral current reaction.Comment: 14 pages, 6 figures; v2 has very minor change

    A side-by-side comparison of Daya Bay antineutrino detectors

    Get PDF
    The Daya Bay Reactor Neutrino Experiment is designed to determine precisely the neutrino mixing angle θ13\theta_{13} with a sensitivity better than 0.01 in the parameter sin22θ13^22\theta_{13} at the 90% confidence level. To achieve this goal, the collaboration will build eight functionally identical antineutrino detectors. The first two detectors have been constructed, installed and commissioned in Experimental Hall 1, with steady data-taking beginning September 23, 2011. A comparison of the data collected over the subsequent three months indicates that the detectors are functionally identical, and that detector-related systematic uncertainties exceed requirements.Comment: 24 pages, 36 figure
    corecore