4,895 research outputs found
Finding Strong Gravitational Lenses in the Kilo Degree Survey with Convolutional Neural Networks
The volume of data that will be produced by new-generation surveys requires
automatic classification methods to select and analyze sources. Indeed, this is
the case for the search for strong gravitational lenses, where the population
of the detectable lensed sources is only a very small fraction of the full
source population. We apply for the first time a morphological classification
method based on a Convolutional Neural Network (CNN) for recognizing strong
gravitational lenses in square degrees of the Kilo Degree Survey (KiDS),
one of the current-generation optical wide surveys. The CNN is currently
optimized to recognize lenses with Einstein radii arcsec, about
twice the -band seeing in KiDS. In a sample of colour-magnitude
selected Luminous Red Galaxies (LRG), of which three are known lenses, the CNN
retrieves 761 strong-lens candidates and correctly classifies two out of three
of the known lenses. The misclassified lens has an Einstein radius below the
range on which the algorithm is trained. We down-select the most reliable 56
candidates by a joint visual inspection. This final sample is presented and
discussed. A conservative estimate based on our results shows that with our
proposed method it should be possible to find massive LRG-galaxy
lenses at z\lsim 0.4 in KiDS when completed. In the most optimistic scenario
this number can grow considerably (to maximally 2400 lenses), when
widening the colour-magnitude selection and training the CNN to recognize
smaller image-separation lens systems.Comment: 24 pages, 17 figures. Published in MNRA
Interpretations of the NuTeV
We summarize theoretical explanations of the three discrepancy
between measured by NuTeV and predicted by the Standard Model
global fit. Possible new physics explanations ({\it e.g.} an unmized ) are
not compelling. The discrepancy would be reduced by a positive momentum
asymmetry in the strange sea; present experimental estimates of are
unreliable or incomplete. Upgrading the NuTeV analysis to NLO would alleviate
concerns that the discrepancy is a QCD effect.Comment: (proceedings for the NuFact'02 Workshop); reference and footnote
added, following the NuTeV proceeding
Grooming coercion and the post-conflict trading of social services in wild Barbary macaques
In animal and human societies, social services such as protection from predators are often exchanged between group
members. The tactics that individuals display to obtain a service depend on its value and on differences between individuals in their capacity to aggressively obtain it. Here we analysed the exchange of valuable social services (i.e. grooming and relationship repair) in the aftermath of a conflict, in wild Barbary macaques (Macaca sylvanus). The relationship repair function of post-conflict affiliation (i.e. reconciliation) was apparent in the victim but not in the aggressor. Conversely, we found evidence for grooming coercion by the aggressor; when the victim failed to give grooming soon after a conflict they received renewed aggression from the aggressor. We argue that post-conflict affiliation between former opponents can be better described as a trading of social services rather than coercion alone, as both animals obtain some benefits (i.e.
grooming for the aggressor and relationship repair for the victim). Our study is the first to test the importance of social coercion in the aftermath of a conflict. Differences in competitive abilities can affect the exchange of services and the occurrence of social coercion in animal societies. This may also help explain the variance between populations and species in their social behaviour and conflict management strategies
The Pseudophosphatase MK-STYX Induces Neurite-Like Outgrowths in PC12 Cells
The rat pheochromocytoma PC12 cell line is a widely used system to study neuronal differentiation for which sustained activation of the extracellular signaling related kinase (ERK) pathway is required. Here, we investigate the function of MK-STYX [MAPK (mitogen-activated protein kinase) phosphoserine/threonine/tyrosine-binding protein] in neuronal differentiation. MK-STYX is a member of the MAPK phosphatase (MKP) family, which is generally responsible for dephosphorylating the ERKs. However, MK-STYX lacks catalytic activity due to the absence of the nucleophilic cysteine in the active site signature motif HC(X-5)R that is essential for phosphatase activity. Despite being catalytically inactive, MK-STYX has been shown to play a role in important cellular pathways, including stress responses. Here we show that PC12 cells endogenously express MK-STYX. In addition, MK-STYX, but not its catalytically active mutant, induced neurite-like outgrowths in PC12 cells. Furthermore, MK-STYX dramatically increased the number of cells with neurite extensions in response to nerve growth factor (NGF), whereas the catalytically active mutant did not. MK-STYX continued to induce neurites in the presence of a MEK (MAP kinase kinase) inhibitor suggesting that MK-STYX does not act through the Ras-ERK/MAPK pathway but is involved in another pathway whose inactivation leads to neuronal differentiation. RhoA activity assays indicated that MK-STYX induced extensions through the Rho signaling pathway. MK-STYX decreased RhoA activation, whereas RhoA activation increased when MK-STYX was down-regulated. Furthermore, MK-STYX affected downstream players of RhoA such as the actin binding protein cofilin. The presence of MK-STYX decreased the phosphorylation of cofilin in non NGF stimulated cells, but increased its phosphorylation in NGF stimulated cells, whereas knocking down MK-STYX caused an opposite effect. Taken together our data suggest that MK-STYX may be a regulator of RhoA signaling, and implicate this pseudophosphatase as a regulator of neuronal differentiation
Target and (Astro-)WISE technologies - Data federations and its applications
After its first implementation in 2003 the Astro-WISE technology has been
rolled out in several European countries and is used for the production of the
KiDS survey data. In the multi-disciplinary Target initiative this technology,
nicknamed WISE technology, has been further applied to a large number of
projects. Here, we highlight the data handling of other astronomical
applications, such as VLT-MUSE and LOFAR, together with some non-astronomical
applications such as the medical projects Lifelines and GLIMPS, the MONK
handwritten text recognition system, and business applications, by amongst
others, the Target Holding. We describe some of the most important lessons
learned and describe the application of the data-centric WISE type of approach
to the Science Ground Segment of the Euclid satellite.Comment: 9 pages, 5 figures, Proceedngs IAU Symposium No 325 Astroinformatics
201
Library Design in Combinatorial Chemistry by Monte Carlo Methods
Strategies for searching the space of variables in combinatorial chemistry
experiments are presented, and a random energy model of combinatorial chemistry
experiments is introduced. The search strategies, derived by analogy with the
computer modeling technique of Monte Carlo, effectively search the variable
space even in combinatorial chemistry experiments of modest size. Efficient
implementations of the library design and redesign strategies are feasible with
current experimental capabilities.Comment: 5 pages, 3 figure
Social interactions through the eyes of macaques and humans
Group-living primates frequently interact with each other to maintain social bonds as well as to compete for valuable resources. Observing such social interactions between group members provides individuals with essential information (e.g. on the fighting ability or altruistic attitude of group companions) to guide their social tactics and choice of social partners. This process requires individuals to selectively attend to the most informative content within a social scene. It is unclear how non-human primates allocate attention to social interactions in different contexts, and whether they share similar patterns of social attention to humans. Here we compared the gaze behaviour of rhesus macaques and humans when free-viewing the same set of naturalistic images. The images contained positive or negative social interactions between two conspecifics of different phylogenetic distance from the observer; i.e. affiliation or aggression exchanged by two humans, rhesus macaques, Barbary macaques, baboons or lions. Monkeys directed a variable amount of gaze at the two conspecific individuals in the images according to their roles in the interaction (i.e. giver or receiver of affiliation/aggression). Their gaze distribution to non-conspecific individuals was systematically varied according to the viewed species and the nature of interactions, suggesting a contribution of both prior experience and innate bias in guiding social attention. Furthermore, the monkeys’ gaze behavior was qualitatively similar to that of humans, especially when viewing negative interactions. Detailed analysis revealed that both species directed more gaze at the face than the body region when inspecting individuals, and attended more to the body region in negative than in positive social interactions. Our study suggests that monkeys and humans share a similar pattern of role-sensitive, species- and context-dependent social attention, implying a homologous cognitive mechanism of social attention between rhesus macaques and humans
The Effects of Mothers' Depression on the Behavioral Assessment of Disruptive Child Behavior
This study uses a group design to compare depressed and non-depressed mothers and their disruptive children. It controls for broad environmental stress factors to examine whether specific differences between groups can be linked with mothers’ depression. It aims to build a more comprehensive picture of depressed mothers’ interactions with their disruptive children by comparing these interactions with those of similar, but non-maternally depressed mother-child dyads, and a non-clinic control group
A Review of Target Mass Corrections
With recent advances in the precision of inclusive lepton--nuclear scattering
experiments, it has become apparent that comparable improvements are needed in
the accuracy of the theoretical analysis tools. In particular, when extracting
parton distribution functions in the large-x region, it is crucial to correct
the data for effects associated with the nonzero mass of the target. We present
here a comprehensive review of these target mass corrections (TMC) to structure
functions data, summarizing the relevant formulas for TMCs in electromagnetic
and weak processes. We include a full analysis of both hadronic and partonic
masses, and trace how these effects appear in the operator product expansion
and the factorized parton model formalism, as well as their limitations when
applied to data in the x->1 limit. We evaluate the numerical effects of TMCs on
various structure functions, and compare fits to data with and without these
corrections.Comment: 41 pages, 13 figures; minor updates to match published versio
- …