13 research outputs found
Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation
We discovered that many proteins located in the kinetochore outer domain, but not the inner core, are depleted from kinetochores and accumulate at spindle poles when ATP production is suppressed in PtK1 cells, and that microtubule depolymerization inhibits this process. These proteins include the microtubule motors CENP-E and cytoplasmic dynein, and proteins involved with the mitotic spindle checkpoint, Mad2, Bub1R, and the 3F3/2 phosphoantigen. Depletion of these components did not disrupt kinetochore outer domain structure or alter metaphase kinetochore microtubule number. Inhibition of dynein/dynactin activity by microinjection in prometaphase with purified p50 “dynamitin” protein or concentrated 70.1 anti-dynein antibody blocked outer domain protein transport to the spindle poles, prevented Mad2 depletion from kinetochores despite normal kinetochore microtubule numbers, reduced metaphase kinetochore tension by 40%, and induced a mitotic block at metaphase. Dynein/dynactin inhibition did not block chromosome congression to the spindle equator in prometaphase, or segregation to the poles in anaphase when the spindle checkpoint was inactivated by microinjection with Mad2 antibodies. Thus, a major function of dynein/dynactin in mitosis is in a kinetochore disassembly pathway that contributes to inactivation of the spindle checkpoint
Közösségfejlesztés a Magyarországi Baptista Egyházban
Szakdolgozatom tĂ©májakĂ©nt a Baptista Egyházban folyĂł közössĂ©gfejlesztĂ©s elemzĂ©sĂ©t választottam. A közössĂ©gfejlesztĂ©s napjainkban a szociolĂłgiának egyre nagyobb teret hĂłdĂtĂł kutatási terĂĽlete. Manapság kĂĽlönbözĹ‘ közössĂ©gek fejlesztĂ©sĂ©re van lehetĹ‘sĂ©g. Hallhatunk iskolák, szervezetek, vállalatok, egyházak vagy Ă©ppen telepĂĽlĂ©sek kĂĽlönfĂ©le közössĂ©geinek fejlesztĂ©sĂ©rĹ‘l. Ezen tevĂ©kenysĂ©gek fontosak a társadalmi csoportok kohĂ©ziĂłjának az elĹ‘segĂtĂ©sĂ©hez Ă©s fenntartásához.
Dolgozatom cĂ©lja, hogy kĂ©pet adjak a Baptista Egyház közössĂ©gĂ©inek működĂ©sĂ©rĹ‘l, összetĂ©telĂ©rĹ‘l, kialakulásárĂłl Ă©s Ă©rtĂ©krendszerĂ©rĹ‘l. A kutatásom cĂ©lja az interjĂş alanyok válaszain keresztĂĽl bemutatni a baptista gyĂĽlekezeteken belĂĽli közössĂ©gek kapcsolatainak rendszerĂ©t, összetettsĂ©gĂ©t, valamint azt, hogy a válaszadĂłk mikĂ©nt vállalnak szerepet a gyĂĽlekezetĂĽk közössĂ©gĂ©nek Ă©pĂtĂ©sĂ©ben.
Kutatási módszerként az interjút választottam és használtam. Félig strukturált interjúkkal dolgoztam.
Szakdolgozatomban három hipotézist fogalmaztam meg, amelyekre a válaszokat a feltett kutatási kérdéseim alapján kaptam meg. Hipotéziseim részben igaznak bizonyultak. A gyülekezetbe járó tagok szeretnék, ha közösségük folyamatosan fejlődne, kapcsolataik erősödne.BSc/BASzociológi
Stu1p Is Physically Associated with β-Tubulin and Is Required for Structural Integrity of the Mitotic Spindle
Formation of the bipolar mitotic spindle relies on a balance of forces acting on the spindle poles. The primary outward force is generated by the kinesin-related proteins of the BimC family that cross-link antiparallel interpolar microtubules and slide them past each other. Here, we provide evidence that Stu1p is also required for the production of this outward force in the yeast Saccharomyces cerevisiae. In the temperature-sensitive stu1–5 mutant, spindle pole separation is inhibited, and preanaphase spindles collapse, with their previously separated poles being drawn together. The temperature sensitivity of stu1–5 can be suppressed by doubling the dosage of Cin8p, a yeast BimC kinesin–related protein. Stu1p was observed to be a component of the mitotic spindle localizing to the midregion of anaphase spindles. It also binds to microtubules in vitro, and we have examined the nature of this interaction. We show that Stu1p interacts specifically with β-tubulin and identify the domains required for this interaction on both Stu1p and β-tubulin. Taken together, these findings suggest that Stu1p binds to interpolar microtubules of the mitotic spindle and plays an essential role in their ability to provide an outward force on the spindle poles