3,748 research outputs found

    Safety of localizing epilepsy monitoring intracranial electroencephalograph electrodes using MRI: radiofrequency-induced heating

    Get PDF
    Purpose: To investigate heating during postimplantation localization of intracranial electroencephalograph (EEG) electrodes by MRI. Materials and Methods: A phantom patient with a realistic arrangement of electrodes was used to simulate tissue heating during MRI. Measurements were performed using 1.5 Tesla (T) and 3T MRI scanners, using head- and body-transmit RF-coils. Two electrode-lead configurations were assessed: a standard condition with external electrode-leads physically separated and a fault condition with all lead terminations electrically shorted. Results: Using a head-transmit-receive coil and a 2.4 W/kg head-average specific absorption rate (SAR) sequence, at 1.5T the maximum temperature change remained within safe limits (<1°C). Under standard conditions, we observed greater heating (2.0°C) at 3T on one system and similar heating (<1°C) on a second, compared with the 1.5T system. In all cases these temperature maxima occurred at the grid electrode. In the fault condition, larger temperature increases were observed at both field strengths, particularly for the depth electrodes. Conversely, with a body-transmit coil at 3T significant heating (+6.4°C) was observed (same sequence, 1.2/0.5 W/kg head/body-average) at the grid electrode under standard conditions, substantially exceeding safe limits. These temperature increases neglect perfusion, a major source of heat dissipation in vivo. Conclusion: MRI for intracranial electrode localization can be performed safely at both 1.5T and 3T provided a head-transmit coil is used, electrode leads are separated, and scanner-reported SARs are limited as determined in advance for specific scanner models, RF coils and implant arrangements. Neglecting these restrictions may result in tissue injury

    Transsulfuration pathway thiols and methylated arginines: the hunter community study

    Get PDF
    Background: Serum homocysteine, when studied singly, has been reported to be positively associated both with the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine [ADMA, via inhibition of dimethylarginine dimethylaminohydrolase (DDAH) activity] and with symmetric dimethylarginine (SDMA). We investigated combined associations between transsulfuration pathway thiols, including homocysteine, and serum ADMA and SDMA concentrations at population level. Methods: Data on clinical and demographic characteristics, medication exposure, C-reactive protein, serum ADMA and SDMA (LC-MS/MS), and thiols (homocysteine, cysteine, taurine, glutamylcysteine, total glutathione, and cysteinylglycine; capillary electrophoresis) were collected from a sample of the Hunter Community Study on human ageing [n = 498, median age (IQR) = 64 (60–70) years]. Results: Regression analysis showed that: a) age (P = 0.001), gender (P = 0.03), lower estimated glomerular filtration rate (eGFR, P = 0.08), body mass index (P = 0.008), treatment with beta-blockers (P = 0.03), homocysteine (P = 0.02), and glutamylcysteine (P = 0.003) were independently associated with higher ADMA concentrations; and b) age (P = 0.001), absence of diabetes (P = 0.001), lower body mass index (P = 0.01), lower eGFR (P&lt;0.001), cysteine (P = 0.007), and glutamylcysteine (P&lt;0.001) were independently associated with higher SDMA concentrations. No significant associations were observed between methylated arginines and either glutathione or taurine concentrations. Conclusions: After adjusting for clinical, demographic, biochemical, and pharmacological confounders the combined assessment of transsulfuration pathway thiols shows that glutamylcysteine has the strongest and positive independent associations with ADMA and SDMA. Whether this reflects a direct effect of glutamylcysteine on DDAH activity (for ADMA) and/or cationic amino acid transport requires further investigations.</br

    The wonder and angst of exploring the unknown: Introduction to the special issue on intolerance of uncertainty

    Get PDF
    Interest in the relationship between intolerance of uncertainty (IU) and emotional disorders has rapidly increased over the last decade. Early theory and research focused on the relationship between IU and generalized anxiety disorder in particular; but, the roles that IU and the underlying 'fear of the unknown' play in the development, maintenance, and treatment of a broad array of emotional disorders have been explored more recently. This introduction provides a brief overview of the contributions to the special issue, which (a) summarize our current state of knowledge, (b) describe innovative methods for assessing and increasing our understanding IU within the context of various emotions and emotional disorders, (c) investigate associations between IU and therapeutic change, and (d) propose future research directions

    Feasibility of simultaneous intracranial EEG-fMRI in humans: a safety study

    Get PDF
    In epilepsy patients who have electrodes implanted in their brains as part of their pre-surgical assessment, simultaneous intracranial EEG and fMRI (icEEG-fMRI) may provide important localising information and improve understanding of the underlying neuropathology. However, patient safety during icEEG-fMRI has not been addressed. Here the potential health hazards associated with icEEG-fMRI were evaluated theoretically and the main risks identified as: mechanical forces on electrodes from transient magnetic effects, tissue heating due to interaction with the pulsed RF fields and tissue stimulation due to interactions with the switched magnetic gradient fields. These potential hazards were examined experimentally in vitro on a Siemens 3 T Trio, 1.5 T Avanto and a GE 3 T Signa Excite scanner using a Brain Products MR compatible EEG system. No electrode flexion was observed. Temperature measurements demonstrated that heating well above guideline limits can occur. However heating could be kept within safe limits (< 1.0 °C) by using a head transmit RF coil, ensuring EEG cable placement to exit the RF coil along its central z-axis, using specific EEG cable lengths and limiting MRI sequence specific absorption rates (SARs). We found that the risk of tissue damage due to RF-induced heating is low provided implant and scanner specific SAR limits are observed with a safety margin used to account for uncertainties (e.g. in scanner-reported SAR). The observed scanner gradient switching induced current (0.08 mA) and charge density (0.2 μC/cm2) were well within safety limits (0.5 mA and 30 μC/cm2, respectively). Site-specific testing and a conservative approach to safety are required to avoid the risk of adverse events

    Clinical and biochemical correlates of serum L-ergothioneine concentrations in community-dwelling middle-aged and older adults

    Get PDF
    Background: Despite the increasing interest towards the biological role of L-ergothioneine, little is known about the serum concentrations of this unusual aminothiol in older adults. We addressed this issue in a representative sample of communitydwelling middle-aged and older adults. Methods: Body mass index, estimated glomerular filtration rate, serum concentrations of L-ergothioneine, taurine, homocysteine, cysteine, glutathione, cysteinylglycine, and glutamylcysteine were evaluated in 439 subjects (age 55–85 years) randomly selected from the Hunter Community Study. Results: Median L-ergothioneine concentration in the entire cohort was 1.01 IQR 0.78–1.33 mmol/L. Concentrations were not affected by gender (P = 0.41) or by presence of chronic medical conditions (P = 0.15). By considering only healthy subjects, we defined a reference interval for L-ergothioneine serum concentrations from 0.36 (90% CI 0.31–0.44) to 3.08 (90% CI 2.45–3.76) mmol/L. Using stepwise multiple linear regression analysis L-ergothioneine was negatively correlated with age (rpartial =20.15; P = 0.0018) and with glutamylcysteine concentrations (rpartial =20.13; P = 0.0063). Conclusions: A thorough analysis of serum L-ergothioneine concentrations was performed in a large group of communitydwelling middle-aged and older adults. Reference intervals were established. Age and glutamylcysteine were independently negatively associated with L-ergothioneine serum concentration.</br

    Mineral safeguarding in England : good practice advice

    Get PDF

    Simultaneous intracranial EEG and fMRI of interictal epileptic discharges in humans

    Get PDF
    Simultaneous scalp EEG–fMRI measurements allow the study of epileptic networks and more generally, of the coupling between neuronal activity and haemodynamic changes in the brain. Intracranial EEG (icEEG) has greater sensitivity and spatial specificity than scalp EEG but limited spatial sampling. We performed simultaneous icEEG and functional MRI recordings in epileptic patients to study the haemodynamic correlates of intracranial interictal epileptic discharges (IED). Two patients undergoing icEEG with subdural and depth electrodes as part of the presurgical assessment of their pharmaco-resistant epilepsy participated in the study. They were scanned on a 1.5 T MR scanner following a strict safety protocol. Simultaneous recordings of fMRI and icEEG were obtained at rest. IED were subsequently visually identified on icEEG and their fMRI correlates were mapped using a general linear model (GLM). On scalp EEG–fMRI recordings performed prior to the implantation, no IED were detected. icEEG–fMRI was well tolerated and no adverse health effect was observed. intra-MR icEEG was comparable to that obtained outside the scanner. In both cases, significant haemodynamic changes were revealed in relation to IED, both close to the most active electrode contacts and at distant sites. In one case, results showed an epileptic network including regions that could not be sampled by icEEG, in agreement with findings from magneto-encephalography, offering some explanation for the persistence of seizures after surgery. Hence, icEEG–fMRI allows the study of whole-brain human epileptic networks with unprecedented sensitivity and specificity. This could help improve our understanding of epileptic networks with possible implications for epilepsy surgery

    A novel mooring tether for peak load mitigation: Initial performance and service simulation testing

    Get PDF
    Copyright © 2014 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in International Journal of Marine Energy. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. The ‘In press‘ version is available at http://dx.doi.org/10.1016/j.ijome.2014.06.001One of the main engineering challenges for floating marine renewable energy devices is the design of reliable, yet cost-effective mooring solutions for the harsh and dynamic marine environment. The mooring system must be able to withstand the ultimate limit state during storm conditions as well as the fatigue limit state due to the highly cyclic wave motions. This paper presents the performance and service simulation testing of a novel mooring tether that combines the material properties of elastomeric and thermoplastic elements. This allows to 'tailor' the load-extension curve to exhibit a low stiffness response for the expected normal, operating, load conditions and a high stiffness response for the envisaged extreme, storm, conditions. The experimental results demonstrate the working principle of the mooring element and show good agreement between the theoretical load extension curve and the conducted performance tests with a distinct hysteresis effect caused by the thermoplastic element. The hysteresis is dependant on the applied pre-tension and load cycle amplitude of the element and to a lesser extent on the cycle frequency. The relaxation of the elastomeric element is quantified, giving insight into the expected longterm performance of the tether. The demonstrated working principle and the possibility to tailor the mooring response allows engineers to load- and cost-optimise the mooring system of floating marine energy converters.Engineering and Physical Sciences Research Council (EPSRC)Peninsula Research Institute for Marine Renewable Energy (PRIMaRE)European Regional Development Fund (ERDF)South West Regional Development Agency (SWRDA

    Neck atonia with a focal stimulation-induced seizure arising from the SMA: pathophysiological considerations.

    Get PDF
    A 28-year-old patient with pharmacoresistant non-lesional right frontal epilepsy underwent extra-operative intracranial EEG recordings and electrical cortical stimulation (ECS) to map eloquent cortex. Right supplementary motor area (SMA) ECS induced a brief seizure with habitual symptoms involving neck tingling followed by asymmetric tonic posturing. An additional feature was neck atonia. During atonia and sensory aura, discharges were seen in the mesial frontal electrodes and precentral gyrus. Besides motor signs, atonia, although rare and not described in the neck muscles, and sensations have been reported with SMA stimulation. The mechanisms underlying neck atonia in seizures arising from the SMA can be explained by supplementary negative motor area (SNMA) - though this was not mapped in electrodes overlying the ictal onset zone in our patient - or primary sensorimotor cortex activation through rapid propagation. Given the broad spectrum of signs elicited by SMA stimulation and rapid spread of seizures arising from the SMA, caution should be taken to not diagnose these as non-epileptic, as had previously occurred in this patient
    corecore