27 research outputs found

    A Babesia bovis gene syntenic to Theileria parva p67 is expressed in blood and tick stage parasites

    No full text
    Completion of the Babesia bovis (T2Bo strain) genome provides detailed data concerning the predicted proteome of this parasite, and allows for a bioinformatics approach to gene discovery. Comparative genomics of the hemoprotozoan parasites B. bovis and Theileria parva revealed a highly conserved syntenic block of genes flanking the p67 gene of T. parva, a sporozoite stage-specific vaccine candidate against East Coast fever (ECF). The syntenic gene in B. bovis, designated bov57, encodes a protein of limited amino acid sequence identity (11.8%) to p67. Monoclonal antibodies were produced against recombinant BOV57 and were used to demonstrate expression of BOV57 in merozoite and kinete stages of the T2Bo strain of B. bovis. Transcript levels of bov57 in kinetes were increased 100-fold in comparison to msa-1, a previously identified gene encoding an erythrocyte stage surface protein. Amino acid sequence comparisons between the T2Bo strain and two attenuated and virulent strains from Argentina and Australia revealed a high degree of sequence conservation in BOV57 among these geographically and pathogenically divergent isolates (97% amino acid sequence identity). Additional genomic comparisons show that the bov57 gene locus is also conserved inB. bigemina and B. equi. While not identifiable through amino acid or nucleotide sequence similarity, the conserved gene order within this locus in multiple piroplasms may suggest a critical function adapted for each species’ unique host and life-cycle

    The Aligned Orbit of WASP-148b, the only Known Hot Jupiter with a nearby Warm Jupiter Companion, from NEID and HIRES

    No full text
    We present spectroscopic measurements of the Rossiter-McLaughlin effect for WASP-148b, the only known hot Jupiter with a nearby warm-Jupiter companion, from the WIYN/NEID and Keck/HIRES instruments. This is one of the first scientific results reported from the newly commissioned NEID spectrograph, as well as the second obliquity constraint for a hot Jupiter system with a close-in companion, after WASP-47. WASP-148b is consistent with being in alignment with the sky-projected spin axis of the host star, with λ=-8.°2-9.°7+8.°7 . The low obliquity observed in the WASP-148 system is consistent with the orderly-alignment configuration of most compact multi-planet systems around cool stars with obliquity constraints, including our solar system, and may point to an early history for these well-organized systems in which migration and accretion occurred in isolation, with relatively little disturbance. By contrast, previous results have indicated that high-mass and hot stars appear to more commonly host a wide range of misaligned planets: not only single hot Jupiters, but also compact systems with multiple super-Earths. We suggest that, to account for the high rate of spin-orbit misalignments in both compact multi-planet and isolated-hot-Jupiter systems orbiting high-mass and hot stars, spin-orbit misalignments may be caused by distant giant planet perturbers, which are most common around these stellar types. © 2022. The Author(s). Published by the American Astronomical Society.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore