6 research outputs found

    Deriving Biomass Models for Small-Diameter Loblolly Pine on the Crossett Experimental Forest

    Get PDF
    Foresters and landowners have a growing interest in carbon sequestration and cellulosic biofuels in southern pine forests, and hence need to be able to accurately predict them. To this end, we derived a set of aboveground biomass models using data from 62 small-diameter loblolly pines (Pinus taeda) sampled on the Crossett Experimental Forest in southeastern Arkansas. Of the 25 equations initially evaluated, we chose 17 that best fit our dataset and compared them using a suite of conventional test statistics, including pseudo-R2 , root mean squared error (RMSE), and bias. Because most of the 17 models varied little in pseudoR 2 (ranging between 0.96 and 0.99), bias (all were within ± 0.01), and RMSE, an additional comparison was done using Akaike’s Information Criterion corrected for small sample size (AICc). This test statistic produced considerably more discrimination between the biomass models. Of the 17 models evaluated, six produced ΔAICc scores that met or exceeded the threshold for substantial support. To recommend a single preferred model, we then extrapolated beyond our actual data and qualitatively compared model predictions with those from the National Biomass Estimator. Our “best” model did not have the minimum AICc score, but rather predicted logically consistent aboveground biomass values at both the upper and lower ends of our extrapolation

    Carbon accumulation in loblolly pine plantations is increased by fertilization across a soil moisture availability gradient

    No full text
    Silvicultural practices, particularly fertilization, may counteract or accentuate the effects of climate change on carbon cycling in planted pine ecosystems, but few studies have empirically assessed the potential effects. In the southeastern United States, we established a factorial throughfall reduction (D) à fertilization (F) experiment in 2012 in four loblolly pine (Pinus taeda L.) plantations encompassing the climatic range of the species in Florida (FL), Georgia (GA), Oklahoma (OK), and Virginia (VA). Net primary productivity (NPP) was estimated from tree inventories for four consecutive years, and net ecosystem productivity (NEP) as NPP minus heterotrophic respiration (RH). Soil respiration (RS) was measured biweekly-monthly for at least one year at each site and simultaneous measurements of RS & RH were taken five to eight times through the year for at least one year during the experiment. Reducing throughfall by 30% decreased available soil water at the surface and for the 0–90 cm soil profile. Fertilization increased NPP at all sites and D decreased NPP (to a lesser extent) at the GA and OK sites. The F + D treatment did not affect NPP. Mean annual NPP under F ranged from 10.01 ± 0.21 MgC·ha−1·yr−1 at VA (mean ± SE) to 17.20 ± 0.50 MgC·ha−1·yr−1 at FL, while the lowest levels were under the D treatment, ranging from 8.63 ± 0.21 MgC·ha−1·yr−1 at VA to 14.97 ± 0.50 MgC·ha−1·yr−1 at FL. RS and RH were, in general, decreased by F and D with differential responses among sites, leading to NEP increases under F. Throughfall reduction increased NEP at FL and VA due to a negative effect on RH and no effect on NPP. Mean annual NEP ranged from 1.63 ± 0.59 MgC·ha−1·yr−1 in the control at OK to 8.18 ± 0.82 MgC·ha−1·yr−1 under F + D at GA. These results suggest that fertilization will increase NEP under a wide range of climatic conditions including reduced precipitation, but either NPP or RH could be the primary driver because F can increase stand growth, as well as suppress RS and RH. Moreover, D and F never significantly interacted for an annual C flux, potentially simplifying estimates of how fertilization and drought will affect C cycling in these ecosystems

    Nordic rattle: the hoarse vocalization and the inflatable laryngeal air sac of reindeer (Rangifer tarandus)

    No full text
    Laryngeal air sacs have evolved convergently in diverse mammalian lineages including insectivores, bats, rodents, pinnipeds, ungulates and primates, but their precise function has remained elusive. Among cervids, the vocal tract of reindeer has evolved an unpaired inflatable ventrorostral laryngeal air sac. This air sac is not present at birth but emerges during ontogenetic development. It protrudes from the laryngeal vestibulum via a short duct between the epiglottis and the thyroid cartilage. In the female the growth of the air sac stops at the age of 2–3 years, whereas in males it continues to grow up to the age of about 6 years, leading to a pronounced sexual dimorphism of the air sac. In adult females it is of moderate size (about 100 cm3), whereas in adult males it is large (3000–4000 cm3) and becomes asymmetric extending either to the left or to the right side of the neck. In both adult females and males the ventral air sac walls touch the integument. In the adult male the air sac is laterally covered by the mandibular portion of the sternocephalic muscle and the skin. Both sexes of reindeer have a double stylohyoid muscle and a thyroepiglottic muscle. Possibly these muscles assist in inflation of the air sac. Head-and-neck specimens were subjected to macroscopic anatomical dissection, computer tomographic analysis and skeletonization. In addition, isolated larynges were studied for comparison. Acoustic recordings were made during an autumn round-up of semi-domestic reindeer in Finland and in a small zoo herd. Male reindeer adopt a specific posture when emitting their serial hoarse rutting calls. Head and neck are kept low and the throat region is extended. In the ventral neck region, roughly corresponding to the position of the large air sac, there is a mane of longer hairs. Neck swelling and mane spreading during vocalization may act as an optical signal to other males and females. The air sac, as a side branch of the vocal tract, can be considered as an additional acoustic filter. Individual acoustic recognition may have been the primary function in the evolution of a size-variable air sac, and this function is retained in mother–young communication. In males sexual selection seems to have favoured a considerable size increase of the air sac and a switch to call series instead of single calls. Vocalization became restricted to the rutting period serving the attraction of females. We propose two possibilities for the acoustic function of the air sac in vocalization that do not exclude each other. The first assumes a coupling between air sac and the environment, resulting in an acoustic output that is a combination of the vocal tract resonance frequencies emitted via mouth and nostrils and the resonance frequencies of the air sac transmitted via the neck skin. The second assumes a weak coupling so that resonance frequencies of the air sac are lost to surrounding tissues by dissipation. In this case the resonance frequencies of the air sac solely influence the signal that is further filtered by the remaining vocal tract. According to our results one acoustic effect of the air sac in adult reindeer might be to mask formants of the vocal tract proper. In other cervid species, however, formants of rutting calls convey essential information on the quality of the sender, related to its potential reproductive success, to conspecifics. Further studies are required to solve this inconsistency

    Adverse and Beneficial Functions of Proteolytic Enzymes in Skeletal Muscle

    No full text
    corecore