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Abstract

Foresters and landowners have a growing interest
in carbon sequestration and cellulosic biofuels in
southern pine forests, and hence need to be able to
accurately predict them. To this end, we derived a set
of aboveground biomass models using data from 62
small-diameter loblolly pines (Pinus taeda) sampled on
the Crossett Experimental Forest in southeastern
Arkansas. Of the 25 equations initially evaluated, we
chose 17 that best fit our dataset and compared them
using a suite of conventional test statistics, including
pseudo-R2, root mean squared error (RMSE), and bias.
Because most of the 17 models varied little in pseudo-
R2 (ranging between 0.96 and 0.99), bias (all were
within ± 0.01), and RMSE, an additional comparison
was done using Akaike’s Information Criterion
corrected for small sample size (AICc). This test
statistic produced considerably more discrimination
between the biomass models. Of the 17 models
evaluated, six produced ΔAICc scores that met or
exceeded the threshold for substantial support. To
recommend a single preferred model, we then
extrapolated beyond our actual data and qualitatively
compared model predictions with those from the
National Biomass Estimator. Our “best” model did not
have the minimum AICc score, but rather predicted
logically consistent aboveground biomass values at
both the upper and lower ends of our extrapolation.

Introduction

Both carbon (C) sequestration and bioenergy
production have become a growing interest for timber
managers in recent years, and the accurate estimation
of tree biomass is essential in the determination of the
ability of forests to support these ecosystem services
(Parresol 1999). Tree biomass is typically estimated
from an allometric equation that predicts oven-dry
biomass for individual stems based on diameter at

breast height (DBH), and then summed to yield
biomass per unit land surface area (Whittaker and
Woodwell 1968). However, very few biomass models
are available for the most commercially important
Arkansas tree species such as loblolly pine (Pinus
taeda).

Lacking options, many have applied equations
from other regions, stand conditions, and (in some
cases) species in order to estimate individual tree
biomass. This approach has a number of challenges
inherent to it, especially if substantial errors in biomass
estimations accumulate when used incorrectly (i.e.,
applied to dissimilar species or extrapolated beyond the
original DBH range for which the model was derived;
Parresol 1999, Chave et al. 2005). For instance,
adaptation of traditional timber volumes (e.g., board
feet) is sometimes done to estimate biomass, but can be
complicated and is particularly sensitive to the
assumptions built into both the original models and
how they are interpreted (e.g., Bragg 2011).
Alternatively, a more generalized approach using
regional- and national-scale tree biomass equations
applicable to a larger geographic area has been pursued
(Schroeder et al. 1997, Jenkins et al. 2003, 2004,
Lambert et al. 2005, Case and Hall 2008). Others
prefer to use “stand-scale” equations to predict
biomass, which for some purposes can be as effective
as more site- and species-specific equations applied to
individual trees in a stand (Snowdon et al. 2000, Asner
et al 2012). The consequences of using these
alternatives on biomass predictions are poorly
understood, however.

Thus, the preferred solution was to develop site-
and species-specific biomass equations, which entailed
destructive sampling trees that were then oven-dried,
weighed, and fit to an appropriate equation. This
research project involves the development of such a
biomass equation for the US Forest Service’s Crossett
Experimental Forest (CEF) in Ashley County,
Arkansas to provide a more direct method of biomass
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estimation. The objective of this paper is to evaluate a
number of existing aboveground live tree biomass
equations using data from small-diameter loblolly
pines from the CEF and produce a single model that
works best for this location. Our final model
recommendation followed both conventional test
statistics and an extrapolative comparison with the
predictions of the National Biomass Estimator (Jenkins
et al. 2003).

Materials and Methods

Study site
The CEF, established in 1934 by the US Forest

Service, covers nearly 680 ha of southeastern
Arkansas. The CEF is dominated by upland forests of
loblolly (Pinus taeda) and shortleaf (Pinus echinata)
pine, with a minor hardwood component. The low
elevation (36-48 m above sea level), gently rolling
terrain of the CEF has limited vertical relief (rarely
more than 3 m) and is primarily covered by silt loam
soils with a loblolly pine site index of 25 to 30 m at 50
years (Gill et al. 1979). Most of the pine stands on the
CEF are naturally regenerated and have a significant
small-diameter pine component.

Sample tree selection and measurement
Live loblolly pines were destructively sampled

from natural-origin stands across the CEF. We selected
primarily precommercial loblolly pines (recorded in
the field to the nearest 0.1 cm), for extraction and
analysis. We chose to focus our sampling efforts on
small-diameter stems due to logistical issues related to
collecting and weighing above- and belowground
biomass of large stems. In addition, the smallest trees
from this diameter range (those <10 cm DBH) are
often not sampled when developing biomass equations
(Snowdon et al. 2000), yet can be a significant fraction
of many forest stands.

Smaller sample trees were pulled directly from the
soil using a small tractor with a hydraulic boom
extension lift. Bigger pines that could not be lifted
from the ground were partially excavated using a
backhoe attachment for the tractor, then pulled. Once
out of the ground, pines were separated into
aboveground (foliage + branch and stemwood), and
belowground (taproot) components—for this study,
only the aboveground components were modeled. The
green weight of tree components was determined
immediately following extraction using a laboratory
balance. All components were then dried in an air-
forced oven at 90o C to a constant weight (kg), and the

stem, branch, and foliage components then summed to
produce aboveground, oven-dry biomass (BD).

Biomass equation design and statistical comparisons
Twenty-five biomass equation forms for American

and European tree species were selected for a
preliminary evaluation. These designs are not an
exhaustive list of possible models, but include the most
commonly applied examples found in current biomass
literature (e.g., Ter-Mikaelian and Koruzkhin 1997,
Jenkins et al. 2003, Posey et al. 2005, Zianis et al.
2005, Doruska and Patterson 2006). Most of these
allometric equations used DBH or some combination
of DBH and total tree height (HT) as independent
variables. Any model that required height applied the
following equation for loblolly pine (Bragg 2008):

(1)

To evaluate differences in biomass projections, all
of these initial models were fit to our local data using
ordinary least squares regression and evaluated using a
fit index called pseudo-R2. As calculated by Statistica
(version 8.0), pseudo-R2 is a nonlinear analog to
conventional R2 used in linear regression (i.e., sum of
squares residual (SSR) divided by the total sum of
squares (SST)) (StatSoft 1995). Of the initial 25
models tested, those that best fit our CEF loblolly pine
data (i.e., those with pseudo-R2 > 0.80) were further
evaluated using additional goodness-of-fit measures
including root mean square error (RMSE):

(2)

and bias, determined from:

(3)

where HTi is the height of the ith pine, is the
predicted height of that same tree, n is the total number
of observations, and p is the number of function
parameters. To further discriminate between the
allometric equations, we used an additional statistic—
corrected Akaike Information Criterion (AICc):

(4)

where and are the estimated residuals
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from the fitted model. AICc allows for the comparison
of multiple models with differing numbers of
parameters and contains a second-order correction for
small sample sizes (Burnham and Anderson 2002). The
actual AICc test statistic used to compare multiple
models is the difference between the lowest AICc score
and the AICc for each other model (ΔAICc). Models
with ΔAICc scores of ≤ 2.0 are held to have 
considerable support as being the correct design(s) to
use (Burnham and Anderson 2004).

Extrapolation and final recommendation
Given the results of our initial evaluations, we

expected that we would have multiple models that
more-or-less equally fit the data. For a final evaluation,
we decided to compare the “best” (final) subset of
equations by extrapolating their predictions for
smaller- (< 0.9 cm) and larger- (> 15.0 cm) DBH trees
in order to observe their behavior beyond the range of
data used to derive them. The equation that produced
the most biologically consistent predictions over this
extrapolation would be considered our preferred
design. For small diameter stems, this consistency
required that trees have positive biomass, even when
DBH = 0 cm—by definition any tree, even those too
short to record diameter at breast height (1.37 m tall),
has biomass, so zero (or negative) biomass values are
illogical (even if statistically possible).

Interpretation of the extrapolation results for larger
trees is more challenging, since we had no guidance for
which benchmark for comparison to choose. We
decided that a conservative, well-documented, and
data-based option would be to compare our predictions
with those of the National Biomass Estimator (NBE)
developed by Jenkins et al. (2003). The NBE estimates
aboveground oven-dry tree biomass (BD, in kilograms):

(5)

The NBE was developed from a collection of
“pseudodata” generated from 43 different equations
from 14 different species of Pinus found across North
America, including 4 equations for Pinus taeda. This
national equation is commonly used by agencies and
land managers to estimate tree and forest biomass,
including the official greenhouse gas inventories of the
United States (US EPA 2008).

Results and Discussion

Of the 62 live loblolly pines that we destructively
sampled on the CEF, DBH ranged from 0.9 to 15.0 cm,

with an average DBH of 4.6 cm and a standard
deviation of 3.6 cm. After processing, the measured BD

for these trees ranged from 0.23 kg to a maximum of
60.87 kg, averaging 7.19 kg (standard deviation =
12.77). The NBE generally fit these data well, with few
prominent departures apparent (Figure 1). The most
noticeable difference appears to be in the smallest of
the trees (those less than 3 cm DBH), for which the
NBE underestimates BD.

Figure 1. Observed and NBE-predicted BD for loblolly pine as a
function of DBH.

Model fitting
Of the more than two dozen initial models tested,

17 fit our locally-derived biomass data well (Tables 1
and 2). For these 17 allometric equations, there was
very little difference between the conventional
goodness-of-fit measures. Pseudo-R2 values of 15 of
the 17 equations exceeded 0.96, and 11 of the 17
exceeded 0.98, suggesting a very high proportion of
the variation in the data was explained by any of these
models. Almost no bias was apparent in any of these
equations, either—across the range of data, only two of
the 17 equations had biases that exceeded 0.004,
although most had a very slight tendency to
underestimate biomass, as suggested by the negative
bias values. No dramatic differences appeared between
most of the RMSE, either (Table 1).
 The ΔAICc test statistic proved to be more helpful
in determining the most appropriate subset of models.
According to the conventional interpretation of this test
statistic (Burnham and Anderson 2002, 2004), only 6
of  the  17 equations  had  ΔAICc scores that met or
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Table 1. Pool of 17 candidate allometric equations (pseudo-R2 > 0.80) for estimating aboveground oven-dry pine
biomass (BD), where are model parameters, DBH is expressed in centimeters, and HT is the total tree height (in
meters).

Model
code Equation form Source

A Zianis et al. (2005)
B Doruska and Patterson (2006)
C Posey et al. (2005)
D Jenkins et al. (2003)
E Zianis et al. (2005)

F Zianis et al. (2005)

G Zianis et al. (2005)
H Zianis et al. (2005)
I Zianis et al. (2005)
J Zianis et al. (2005)
K Zianis et al. (2005)
L Zianis et al. (2005)
M Zianis et al. (2005)

N Zianis et al. (2005)
O Zianis et al. (2005)

P Zianis et al. (2005)
Q Zianis et al. (2005)

c

< 2; Table 2). Indeed, a visual comparison of this final
subset (Figure 2) shows that for the range of field-
sampled data, it is virtually impossible to distinguish
between any of these equations (Models D, E, F, G, J,
and P).

Evaluating the best fitted model subset
Figure 2 shows the strong congruence between the

BD data and model predictions. In fact, the closeness of
the different predictions makes their behavior hard to
interpret at this scale. To alleviate this problem, we
further separated our analysis into three DBH
groupings: 0.9-2.0 cm, 2.0-8.0 cm, and 8.0-15.0 cm. At
the smallest range, it becomes clear that none of the
models actually fit the data particularly well (Figure
3a). Three models (E, J, and the NBE) consistently
underestimated biomass across this range, while four
(D, F, G, and P) overestimated biomass. Because of its
design, the NBE will always produce zero biomass
when DBH = 0. The other two models (E and J) that
underestimated biomass actually predicted negative BD

for trees between 1.0 and 1.5 cm DBH. Later
discussion will show why these underestimated results
are undesirable, particularly for stands with a large

amount of small-diameter trees.
At the lowest diameter range (< 2 cm) of our

sampled data, models became increasingly dissimilar
(Figure 3a; Table 3). At 0.9 cm (the smallest sampled

Figure 2. Predicted aboveground live-tree, oven-dry biomass (kg)
as a function of DBH for loblolly pine (0 and 15 cm) using biomass

c < 2.
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Table 2. Goodness-of-fit measures for the 17 aboveground biomass models fitted to 62 small-diameter loblolly pines

c

Model ----------------- Fitted parameters ---------------- Pseudo-
Code 0 1 2 3 4 R2 RMSE Bias AICc c

A -1.203 -0.065 0.315 -0.161 -- 0.9683 2.330 -0.00014 109.45 39.85
B 0.923 0.005 0.017 -- -- 0.9800 1.837 -0.00015 78.73 9.14
C 0.695 -0.861 10.800 -9.649 -- 0.9827 1.723 -0.00103 72.06 2.46
D 0.413 -2.875 2.576 -- -- 0.9824 1.720 -0.00606 70.62 1.02
E -1.782 0.175 13.288 35.037 -- 0.9832 1.699 0.00007 70.26 0.66
F 0.505 0.000 37.164 -2.221 -31.622 0.9840 1.668 -0.00479 69.33 0.27
G 0.361 0.047 0.902 -- -- 0.9824 1.723 -0.00002 70.83 1.23
H 0.125 0.125 0.076 0.016 -- 0.9827 1.724 -0.00007 72.08 2.48
I 1.968 -1.374 0.344 -- -- 0.9798 1.844 0.00021 79.20 9.60
J -4.609 3.498 0.198 -- -- 0.9827 1.706 -0.00003 69.60 0.00
K -1.203 -0.065 0.315 -0.161 -- 0.9683 2.330 -0.00014 109.45 39.85
L -6.264 -6.264 -34.945 8.350 -- 0.9354 3.328 -0.00013 153.68 84.08
M 4.051 -1.818 0.345 -- -- 0.9802 1.826 -0.00006 77.99 8.39
N 0.695 0.423 10.800 -9.649 -- 0.9827 1.723 -0.00057 72.06 2.46
O -61.772 -57.672 -101.599 -- -- 0.8040 5.749 -0.00048 220.21 150.61
P 0.413 0.056 2.576 -- -- 0.9824 1.720 -0.00004 70.62 1.02
Q -1.152 0.250 -- -- -- 0.9683 2.291 0.00002 104.95 35.35

stem), the BD we actually measured was 0.27 kg, while
predictions ranged from -0.43 kg (model E) to 0.50 kg
(model F)—departures that exceed 60%. At larger
diameters (2.0 to 15.0 cm DBH), all models did a
better job of fitting the sampled data (Figures 3b,c).

Indeed, it is virtually impossible to distinguish
between the predictions, with the exception of the more
conservative NBE, which forecast somewhat lower BD

for loblolly pines greater than 13.0 cm DBH (Figure
3c). Since the NBE was developed using many North
American pine species, including some with lower
wood specific gravity than loblolly, it is not surprising
that this biomass model will underpredict BD.

Given the inherent variation in the data, it is hard
to choose any one of the final model subset over any
other. The relative impacts of under- or overestimates
in the smallest of the diameter range (Figure 3a) are
substantial, but unless the trees being evaluated are all
very small in size, the absolute differences (± 0.2-0.3
kg) suggest that errors in this range will have
considerably less influence on any stand-level
predictions. The data indicate that the only two models
to avoid if simulations are strictly limited to the range
of data we sampled are E and J, because both predict
illogical results in the smallest diameters. It is
important to note that models E and J had two of the

c scores, further reinforcing the idea that
AICc, though a useful metric for reducing the number
of possible models, should not be the ultimate
determining factor for final model selection.

The relatively poor job any of these models did
fitting to the data at this small end of the diameter
range is a consequence of the least squares regression
we applied, which minimizes the departures between
actual and predicted values. Since the absolute
departures in this diameter range are small (mostly <
0.3 kg) compared to those at larger diameters (multiple
kg), the larger trees have a much greater influence on
curve fitting. In most operational contexts, loblolly
pines less than 2 cm in diameter are rarely tallied
(beyond simple presence/absence), so unless a stand-
level biomass estimate with only very small diameter
stems is being made (and there is a very large number
of these), this propensity will probably not be noticed.

It is also remarkable to see that the NBE, which
was not developed specifically for loblolly pine,
nevertheless did a good job of predicting BD across our
sample range. The NBE model rarely differed by more
than 15% from any of the other model predictions.

Model extrapolation and final recommendation
Our actual data are silent in what they can tell us
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Figure 3. Predicted BD as a function of DBH for loblolly pine from the CEF for the diameter ranges of (a) 0.0 to 2.0 cm; (b) 2.0 to 8.0 cm; (c) 8.0
to 15.0 cm; and (d) extrapolated from 15.0 to 50.0 cm.

about trees greater than 15.0 cm DBH. Statistically, it
is technically inappropriate to extrapolate regression
equations beyond the range of the data from which
they were derived (Neter et al. 1989). However, such
extrapolations are often done, and can bestow logistical
advantages, particularly when used to conserve limited
financial and staffing resources. Since our goal was to
recommend a single pine biomass model for the CEF,
and the traditional statistical tests did not seem to
adequately discriminate between the six best fitting
models, we viewed behavior of extrapolated models as
an additional test of quality. In terms of application,
this meant that we were interested in identifying the
most biologically reasonable and constrained behavior
of our final subset of models when extrapolated both

below and above our sampled diameter range.
We have previously discussed very small diameter

tree biomass outcomes using these best fit models. The
negative predictions of two models even before we
extrapolated towards zero DBH already removed two
equations from further consideration. The NBE, as
designed, will trend to zero biomass when DBH = 0.0
cm, which is a superficially logical (but incorrect)
outcome—after all, pines shorter than DBH technically
have DBH = 0.0 cm, but since they occupy space and
have mass, they have positive (non-zero) biomass.
Even though our sample lacked trees between 0.0 and
0.9 cm DBH, it is clear from the trend in Figure 3a that
the likely range of biomass for very small pine trees
approaching 0.0 cm DBH is between 0.1 and 0.3 kg.
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c scores < 2) and the
National Biomass Estimator (NBE) predicted result. Portions of the DBH range extrapolated beyond the field collected
biomass data are shown in italics.

------------------------------------------------ DBH (in cm) range ------------------------------------------------
Model Extrapolated ------------------- Field sample ------------------- ----------- Extrapolated -----------
Code 0.0 0.9 5.0 10.0 15.0 20.0 35.0 50.0

D 0.41 0.46 3.97 21.65 60.76 127 536 1,342
E -0.49 -0.12 4.48 20.99 62.20 147 910 2,944
F 0.50 0.50 4.78 28.97 84.53 231 5690 169,036
G 0.36 0.43 3.97 21.47 60.27 125 502 1,165
J -1.11 -0.43 4.79 20.64 63.21 178 352 68,496
P 0.41 0.46 3.98 21.67 60.82 127 536 1,343

NBE 0.00 0.06 3.99 21.56 57.87 117 456 1,086

None of the remaining models actually predict
within that range, although Model G is close (between
0.35 and 0.4 kg). Model F does a better job than the
others for a portion (1.4-1.9 cm DBH) of the sampled
diameter range, but then quickly shifts toward the
higher end of the small-diameter extrapolation (Figure
3a).

Extrapolation for large diameter stems provided a
far more telling (and operationally impactful) story.
Extending our six best models up to moderately large
loblolly pines quickly showed the perils of careless
extrapolation of regression models (Table 3, Figure
3d). Assuming the NBE’s biomass predictions of BD =
117, 456, and 1,085 kg for 20, 35, and 50 cm DBH
loblolly pines are reasonable, most of the models
quickly depart from this conservative trajectory and
produce much higher biomass estimates. The shape of
the curve of Model F, which did reasonably well at

c

value (Table 2), changes dramatically just beyond the
sampled range, and increasingly departs from the rest
of the models. For the 50 cm DBH pine example,
Model F would predict a tree with a BD just over
169,000 kg, or more than 100 times the NBE estimate
for a tree of that size (Figure 3d). Models E and J
performed poorly at both small and large diameter
extrapolations (Figures 3a and 3d, Table 3). Models D
and P performed reasonably at both small and large
extrapolations, but were not quite as good in either
extreme as Model G, which showed reasonable
biological behavior at both ends of the spectrum (even

c scores of the final
subset).

Model fit quality for large diameter stems has a
much bigger impact on simulation results, and is of far

greater interest for timber managers. Since biomass
equations can prove unreliable beyond the range of
data used to fit them (Crow and Schlaegel 1988), it is
critical that we consider their behavior when
extrapolated—it is likely that users will apply any
biomass model to trees not covered by the sample
range. Based on this assumption, we recommend the
use of Model G to determine aboveground oven-dry
biomass on the CEF, as it fit the actual data well, and
behaved sensibly when extrapolated.

Conclusions

Live tree biomass estimates are essential for
carbon accounting, bioenergy feasibility studies, and
productivity analyses. Existing research (e.g., Payadeh
1981, Ruark et al. 1987, Crow and Schlaegel 1988,
Parresol 1999, Chave et al. 2004, 2005, Zianis et al.
2005, Bragg 2011, Melson et al. 2011) has shown that
model choice and application can have a substantial
impact on the estimates of biomass accumulation.
Broad-scale estimates of merchantable tree biomass
may differ considerably from estimates made with
more regionally representative models, and the
potential success of a bioenergy project might hinge on
these differences (Zhou and Hemstrom 2009).
Therefore, careful consideration and evaluation of
models should be implemented prior to their
application.

Model accuracy will likely vary among regions
and species, as a result of genetics, site conditions, and
growth rates. Rather than applying models developed
for other locations or using other species, we
destructively sampled a number of loblolly pines and
tested a number of equations for their ability to fit
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aboveground biomass. Even though multiple models
reasonably fit the actual (field sampled) data, we were
able to use extrapolation in addition to conventional
goodness-of-fit tests to recommend a single equation
that appears capable of predicting biomass for loblolly
pine across the range of diameters found on the CEF.
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