39 research outputs found

    SYMPOSIUM 4

    No full text

    Tropospheric ozone: respiratory effects and Australian air quality goals.

    No full text
    OBJECTIVE--To review the health effects of tropospheric ozone and discuss the implications for public health policy. DESIGN--Literature review and consultation with scientists in Australia and overseas. Papers in English or with English language abstracts were identified by Medline search from the international peer reviewed published reports. Those from the period 1980-93 were read systematically but selected earlier papers were also considered. Reports on ozone exposures were obtained from environmental agencies in the region. RESULTS--Exposure to ozone at concentrations below the current Australian air quality goal (0.12 ppm averaged over one hour) may cause impaired respiratory function. Inflammatory changes in the small airways and respiratory symptoms result from moderate to heavy exercise in the presence of ozone at levels of 0.08-0.12 ppm. The changes in respiratory function due to ozone are short lived, vary with the duration of exposure, may be modified by levels of other pollutants (such as sulphur dioxide and particulates), and differ appreciably between individuals. Bronchial lavage studies indicate that inflammation and other pathological changes may occur in the airways before reductions in air flow are detectable, and persist after respiratory function has returned to normal. It is not known whether exposures to ozone at low levels (0.08-0.12 ppm) cause lasting damage to the lung or, if such damage does occur, whether it is functionally significant. At present, it is not possible to identify confidently population subgroups with heightened susceptibility to ozone. People with asthma may be more susceptible to the effects of ozone than the general population but the evidence is not consistent. Recent reports suggest that ozone increases airway reactivity on subsequent challenge with allergens and other irritants. Animal studies are consistent with the findings in human populations. CONCLUSION--A new one hour air quality ozone goal of 0.08 ppm for Australia, and the introduction of a four hour goal of 0.06 ppm are recommended on health grounds

    Acute effects of summer air pollution on respiratory function in primary school children in Southern England

    No full text
    BACKGROUND: There is growing concern about health effects of air pollution in the UK. Studies in the USA have reported adverse effects on lung function among children but no comparable studies have been published in the UK. This study investigates the relationship between daily changes in ambient air pollution and short term variations in lung function in a panel of school children. METHODS: One hundred and fifty four children aged 7-11 attending a primary school adjacent to a major motorway in Surrey, south-east England, were studied. Bellows spirometry was performed daily on 31 schooldays between 6 June and 21 July 1994. Levels of ozone, nitrogen dioxide, and particulates of less than 10 microns in diameter (PM10) were measured continuously at the school and the pollen count was measured six miles away. Relationships between daily changes in forced expiratory volume in 0.75 seconds (FEV0.75), forced vital capacity (FVC), the FEV0.75/FVC ratio and pollutants were analysed using separate autoregressive models for each child. A weighted average of the resulting slopes was then calculated. RESULTS: There was a significant inverse relationship between daily mean PM10 levels lagged one day and FVC, with a reduction in lung function of 1% (95% CI 0.3% to 2%) across the whole range of PM10 levels (20-150 micrograms/m3). The effect on FEV0.75 was similar (-0.5%) but was not significant when weighted by 1/SE2 (95% CI -1.2% to 0.2%). There was no effect of PM10 levels on the FEV0.75/FVC ratio. No significant association was seen between FEV0.75, FVC, or the FEV0.75/FVC ratio and either ozone or nitrogen dioxide levels. There was no evidence that wheezy children were more affected than healthy children. Pollen levels on the previous day had no effect on lung function and did not change the air pollution results. CONCLUSIONS: There is a very small, but statistically significant, adverse effect of airborne respirable particulate matter, measured as PM10, on lung function in this study group. There is no evidence for an inverse association of lung function with levels of ozone or NO2 measured on the previous day
    corecore