10 research outputs found

    Neighborhood regulation by lncRNA promoters, transcription, and splicing

    Get PDF
    Mammalian genomes are pervasively transcribed to produce thousands of spliced long noncoding RNAs (lncRNAs), whose functions remain poorly understood. Because recent evidence has implicated several specific lncRNA loci in the local regulation of gene expression, we sought to determine whether such local regulation is a property of many lncRNA loci. We used genetic manipulations to dissect 12 genomic loci that produce lncRNAs and found that 5 of these loci influence the expression of a neighboring gene in cis. Surprisingly, however, none of these effects required the specific lncRNA transcripts themselves and instead involved general processes associated with their production, including enhancer-like activity of gene promoters, the process of transcription, and the splicing of the transcript. Interestingly, such effects are not limited to lncRNA loci: we found similar effects on local gene expression at 4 of 6 protein-coding loci. These results demonstrate that 'crosstalk' among neighboring genes is a prevalent phenomenon that can involve multiple mechanisms and cis regulatory signals, including a novel role for RNA splicing. These mechanisms may explain the function and evolution of some genomic loci that produce lncRNAs

    High-Resolution Mapping of Multiway Enhancer-Promoter Interactions Regulating Pathogen Detection

    Get PDF
    Eukaryotic gene expression regulation involves thousands of distal regulatory elements. Understanding the quantitative contribution of individual enhancers to gene expression is critical for assessing the role of disease-associated genetic risk variants. Yet, we lack the ability to accurately link genes with their distal regulatory elements. To address this, we used 3D enhancer-promoter (E-P) associations identified using split-pool recognition of interactions by tag extension (SPRITE) to build a predictive model of gene expression. Our model dramatically outperforms models using genomic proximity and can be used to determine the quantitative impact of enhancer loss on gene expression in different genetic backgrounds. We show that genes that form stable E-P hubs have less cell-to-cell variability in gene expression. Finally, we identified transcription factors that regulate stimulation-dependent E-P interactions. Together, our results provide a framework for understanding quantitative contributions of E-P interactions and associated genetic variants to gene expression

    Ebola Virus Glycoprotein with Increased Infectivity Dominated the 2013-2016 Epidemic

    No full text
    The magnitude of the 2013-2016 Ebola virus disease (EVD) epidemic enabled an unprecedented number of viral mutations to occur over successive human-to-human transmission events, increasing the probability that adaptation to the human host occurred during the outbreak. We investigated one nonsynonymous mutation, Ebola virus (EBOV) glycoprotein (GP) mutant A82V, for its effect on viral infectivity. This mutation, located at the NPC1-binding site on EBOV GP, occurred early in the 2013-2016 outbreak and rose to high frequency. We found that GP-A82V had heightened ability to infect primate cells, including human dendritic cells. The increased infectivity was restricted to cells that have primate-specific NPC1 sequences at the EBOV interface, suggesting that this mutation was indeed an adaptation to the human host. GP-A82V was associated with increased mortality, consistent with the hypothesis that the heightened intrinsic infectivity of GP-A82V contributed to disease severity during the EVD epidemic

    Comparative Analysis of Immune Cells Reveals a Conserved Regulatory Lexicon

    No full text
    Most well-characterized enhancers are deeply conserved. In contrast, genome-wide comparative studies of steady-state systems showed that only a small fraction of active enhancers are conserved. To better understand conservation of enhancer activity, we used a comparative genomics approach that integrates temporal expression and epigenetic profiles in an innate immune system. We found that gene expression programs diverge among mildly induced genes, while being highly conserved for strongly induced genes. The fraction of conserved enhancers varies greatly across gene expression programs, with induced genes and early-response genes, in particular, being regulated by a higher fraction of conserved enhancers. Clustering of conserved accessible DNA sequences within enhancers resulted in over 60 sequence motifs including motifs for known factors, as well as many with unknown function. We further show that the number of instances of these motifs is a strong predictor of the responsiveness of a gene to pathogen detection

    scRNA-seq of human vitiligo reveals complex networks of subclinical immune activation and a role for CCR5 in Treg function

    No full text
    Vitiligo is an autoimmune skin disease characterized by the targeted destruction of melanocytes by T cells. Cytokine signaling between keratinocytes and T cells results in CD8+ T cell infiltration of vitiligo lesions, but the full scope of signals required to coordinate autoimmune responses is not completely understood. We performed single-cell RNA sequencing on affected and unaffected skin from patients with vitiligo, as well as healthy controls, to define the role of each cell type in coordinating autoimmunity during disease progression. We confirmed that type 1 cytokine signaling occupied a central role in disease, but we also found that this pathway was used by regulatory T cells (Tregs) to restrain disease progression in nonlesional skin. We determined that CCL5-CCR5 signaling served as a chemokine circuit between effector CD8+ T cells and Tregs, and mechanistic studies in a mouse model of vitiligo revealed that CCR5 expression on Tregs was required to suppress disease in vivo but not in vitro. CCR5 was not required for Treg recruitment to skin but appeared to facilitate Treg function by properly positioning these cells within the skin. Our data provide critical insights into the pathogenesis of vitiligo and uncover potential opportunities for therapeutic interventions

    Local regulation of gene expression by lncRNA promoters, transcription and splicing

    Get PDF
    Mammalian genomes are pervasively transcribed1, to produce thousands of long non-coding RNAs (lncRNAs). A few of these lncRNAs have been shown to recruit regulatory complexes through RNA–protein interactions to influence the expression of nearby genes5 and it has been suggested that many other lncRNAs can also act as local regulators. Such local functions could explain the observation that lncRNA expression is often correlated with the expression of nearby genes. However, these correlations have been challenging to dissect1 and could alternatively result from processes that are not mediated by the lncRNA transcripts themselves. For example, some gene promoters have been proposed to have dual functions as enhancers, and the process of transcription itself may contribute to gene regulation by recruiting activating factors or remodelling nucleosomes. Here we use genetic manipulation in mouse cell lines to dissect 12 genomic loci that produce lncRNAs and find that 5 of these loci influence the expression of a neighbouring gene in cis. Notably, none of these effects requires the specific lncRNA transcripts themselves and instead involves general processes associated with their production, including enhancer-like activity of gene promoters, the process of transcription, and the splicing of the transcript. Furthermore, such effects are not limited to lncRNA loci: we find that four out of six protein-coding loci also influence the expression of a neighbour. These results demonstrate that cross-talk among neighbouring genes is a prevalent phenomenon that can involve multiple mechanisms and cis-regulatory signals, including a role for RNA splice sites. These mechanisms may explain the function and evolution of some genomic loci that produce lncRNAs and broadly contribute to the regulation of both coding and non-coding genes

    Haploinsufficiency of MeCP2-interacting transcriptional co-repressor SIN3A causes mild intellectual disability by affecting the development of cortical integrity

    Get PDF
    Numerous genes are associated with neurodevelopmental disorders such as intellectual disability and autism spectrum disorder (ASD), but their dysfunction is often poorly characterized. Here we identified dominant mutations in the gene encoding the transcriptional repressor and MeCP2 interactor switch-insensitive 3 family member A (SIN3A; chromosome 15q24.2) in individuals who, in addition to mild intellectual disability and ASD, share striking features, including facial dysmorphisms, microcephaly and short stature. This phenotype is highly related to that of individuals with atypical 15q24 microdeletions, linking SIN3A to this microdeletion syndrome. Brain magnetic resonance imaging showed subtle abnormalities, including corpus callosum hypoplasia and ventriculomegaly. Intriguingly, in vivo functional knockdown of Sin3a led to reduced cortical neurogenesis, altered neuronal identity and aberrant corticocortical projections in the developing mouse brain. Together, our data establish that haploinsufficiency of SIN3A is associated with mild syndromic intellectual disability and that SIN3A can be considered to be a key transcriptional regulator of cortical brain development
    corecore