919 research outputs found
Comparison of methods for estimating the nucleotide substitution matrix
10.1186/1471-2105-9-511BMC Bioinformatics9-BBMI
Determinants of migrant career success: A study of recent skilled migrants in Australia
Australia has been aggressively pursuing skilled migrants to sustain its population and foster economic growth. However, many skilled migrants experience a downward career move upon migration to Australia. Based on a survey of recent skilled migrants, this study investigates how individual (age, years of settlement, qualifications), national/societal (citizenship and settlement), and organizationâlevel (climate of inclusion) factors influence their career success. Overall, we found that: (1) age at migration matters more than length of settlement in predicting skilled migrant career success; (2) citizenship uptake and living in a neighbourhood with a greater number of families from the same country of origin facilitate postâmigration career success; and (3) perceptions of one\u27s social/informal networks in the workplace â a dimension of perceived organizational climate of inclusion â also have a positive impact on migrant career outcomes
Electroweak phase diagram at finite lepton number density
We study the thermodynamics of the electroweak theory at a finite lepton
number density. The phase diagram of the theory is calculated by relating the
full 4-dimensional theory to a 3-dimensional effective theory which has been
previously solved using nonperturbative methods. It is seen that the critical
temperature increases and the value of the Higgs boson mass at which the first
order phase transition line ends decreases with increasing leptonic chemical
potential.Comment: 16 pages, 14 figures, RevTex4, v2: references added, minor
corrections, v3: small changes, references added, published in Phys. Rev.
Factors Influencing the Participation of Older People in Clinical Trials : Data Analysis from the MAVIS Trial
Peer reviewedPostprin
Scalar Dark Matter From Theory Space
The scalar dark matter candidate in a prototypical theory space little Higgs
model is investigated. We review all details of the model pertinent to dark
matter. We perform a thermal relic density calculation including couplings to
the gauge and Higgs sectors of the model. We find two regions of parameter
space that give acceptable dark matter abundances. The first region has a dark
matter candidate with a mass of order 100 GeV, the second region has a heavy
candidate with a mass greater than about 500 GeV$. The dark matter candidate in
either region is an admixture of an SU(2) triplet and an SU(2) singlet, thereby
constituting a WIMP (weakly interacting massive particle).Comment: 18 pages, 2 figures, version to appear in PR
Angular momenta creation in relativistic electron-positron plasma
Creation of angular momentum in a relativistic electron-positron plasma is
explored. It is shown that a chain of angular momentum carrying vortices is a
robust asymptotic state sustained by the generalized nonlinear Schrodinger
equation characteristic to the system. The results may suggest a possible
electromagnetic origin of angular momenta when it is applied to the MeV epoch
of the early Universe.Comment: 20 pages, 6 figure
Constrained Supersymmetric Flipped SU(5) GUT Phenomenology
We explore the phenomenology of the minimal supersymmetric flipped SU(5) GUT
model (CFSU(5)), whose soft supersymmetry-breaking (SSB) mass parameters are
constrained to be universal at some input scale, , above the GUT scale,
. We analyze the parameter space of CFSU(5) assuming that the lightest
supersymmetric particle (LSP) provides the cosmological cold dark matter,
paying careful attention to the matching of parameters at the GUT scale. We
first display some specific examples of the evolutions of the SSB parameters
that exhibit some generic features. Specifically, we note that the relationship
between the masses of the lightest neutralino and the lighter stau is sensitive
to , as is the relationship between the neutralino mass and the masses
of the heavier Higgs bosons. For these reasons, prominent features in generic
planes such as coannihilation strips and rapid-annihilation
funnels are also sensitive to , as we illustrate for several cases with
tan(beta)=10 and 55. However, these features do not necessarily disappear at
large , unlike the case in the minimal conventional SU(5) GUT. Our
results are relatively insensitive to neutrino masses.Comment: 23 pages, 8 figures; (v2) added explanations and corrected typos,
version to appear in EPJ
Integrating group Delphi, fuzzy logic and expert systems for marketing strategy development:the hybridisation and its effectiveness
A hybrid approach for integrating group Delphi, fuzzy logic and expert systems for developing marketing strategies is proposed in this paper. Within this approach, the group Delphi method is employed to help groups of managers undertake SWOT analysis. Fuzzy logic is applied to fuzzify the results of SWOT analysis. Expert systems are utilised to formulate marketing strategies based upon the fuzzified strategic inputs. In addition, guidelines are also provided to help users link the hybrid approach with managerial judgement and intuition. The effectiveness of the hybrid approach has been validated with MBA and MA marketing students. It is concluded that the hybrid approach is more effective in terms of decision confidence, group consensus, helping to understand strategic factors, helping strategic thinking, and coupling analysis with judgement, etc
Cosmological Non-Linearities as an Effective Fluid
The universe is smooth on large scales but very inhomogeneous on small
scales. Why is the spacetime on large scales modeled to a good approximation by
the Friedmann equations? Are we sure that small-scale non-linearities do not
induce a large backreaction? Related to this, what is the effective theory that
describes the universe on large scales? In this paper we make progress in
addressing these questions. We show that the effective theory for the
long-wavelength universe behaves as a viscous fluid coupled to gravity:
integrating out short-wavelength perturbations renormalizes the homogeneous
background and introduces dissipative dynamics into the evolution of
long-wavelength perturbations. The effective fluid has small perturbations and
is characterized by a few parameters like an equation of state, a sound speed
and a viscosity parameter. These parameters can be matched to numerical
simulations or fitted from observations. We find that the backreaction of
small-scale non-linearities is very small, being suppressed by the large
hierarchy between the scale of non-linearities and the horizon scale. The
effective pressure of the fluid is always positive and much too small to
significantly affect the background evolution. Moreover, we prove that
virialized scales decouple completely from the large-scale dynamics, at all
orders in the post-Newtonian expansion. We propose that our effective theory be
used to formulate a well-defined and controlled alternative to conventional
perturbation theory, and we discuss possible observational applications.
Finally, our way of reformulating results in second-order perturbation theory
in terms of a long-wavelength effective fluid provides the opportunity to
understand non-linear effects in a simple and physically intuitive way.Comment: 84 pages, 3 figure
- âŠ