15,103 research outputs found

    Modelling the alumina abundance of oxygen-rich evolved stars in the Large Magellanic Cloud

    Full text link
    In order to determine the composition of the dust in the circumstellar envelopes of oxygen-rich asymptotic giant branch (AGB) stars we have computed a grid of modust radiative-transfer models for a range of dust compositions, mass-loss rates, dust shell inner radii and stellar parameters. We compare the resulting colours with the observed oxygen-rich AGB stars from the SAGE-Spec Large Magellanic Cloud (LMC) sample, finding good overall agreement for stars with a mid-infrared excess. We use these models to fit a sample of 37 O-rich AGB stars in the LMC with optically thin circumstellar envelopes, for which 5−-35-μ\mum Spitzer infrared spectrograph (IRS) spectra and broadband photometry from the optical to the mid-infrared are available. From the modelling, we find mass-loss rates in the range ∼8×10−8\sim 8\times10^{-8} to 5×10−65\times10^{-6} M⊙ yr−1_{\odot}\ \mathrm{yr}^{-1}, and we show that a grain mixture consisting primarily of amorphous silicates, with contributions from amorphous alumina and metallic iron provides a good fit to the observed spectra. Furthermore, we show from dust models that the AKARI [11]−-[15] versus [3.2]−-[7] colour-colour diagram, is able to determine the fractional abundance of alumina in O-rich AGB stars.Comment: 22 pages, 17 figures, accepted MNRA

    Direct multiscale coupling of a transport code to gyrokinetic turbulence codes

    Full text link
    Direct coupling between a transport solver and local, nonlinear gyrokinetic calculations using the multiscale gyrokinetic code TRINITY [M. Barnes, Ph.D. thesis, arxiv:0901.2868] is described. The coupling of the microscopic and macroscopic physics is done within the framework of multiscale gyrokinetic theory, of which we present the assumptions and key results. An assumption of scale separation in space and time allows for the simulation of turbulence in small regions of the space-time grid, which are embedded in a coarse grid on which the transport equations are implicitly evolved. This leads to a reduction in computational expense of several orders of magnitude, making first-principles simulations of the full fusion device volume over the confinement time feasible on current computing resources. Numerical results from TRINITY simulations are presented and compared with experimental data from JET and ASDEX Upgrade plasmas.Comment: 12 pages, 13 figures, invited paper for 2009 APS-DPP meeting, submitted to Phys. Plasma

    A study of rotating globular clusters - the case of the old, metal-poor globular cluster NGC 4372

    Full text link
    Aims: We present the first in-depth study of the kinematic properties and derive the structural parameters of NGC 4372 based on the fit of a Plummer profile and a rotating, physical model. We explore the link between internal rotation to different cluster properties and together with similar studies of more GCs, we put these in the context of globular cluster formation and evolution. Methods: We present radial velocities for 131 cluster member stars measured from high-resolution FLAMES/GIRAFFE observations. Their membership to the GC is additionally confirmed from precise metallicity estimates. Using this kinematic data set we build a velocity dispersion profile and a systemic rotation curve. Additionally, we obtain an elliptical number density profile of NGC 4372 based on optical images using a MCMC fitting algorithm. From this we derive the cluster's half-light radius and ellipticity as r_h=3.4'+/-0.04' and e=0.08+/-0.01. Finally, we give a physical interpretation of the observed morphological and kinematic properties of this GC by fitting an axisymmetric, differentially rotating, dynamical model. Results: Our results show that NGC 4372 has an unusually high ratio of rotation amplitude to velocity dispersion (1.2 vs. 4.5 km/s) for its metallicity. This, however, puts it in line with two other exceptional, very metal-poor GCs - M 15 and NGC 4590. We also find a mild flattening of NGC 4372 in the direction of its rotation. Given its old age, this suggests that the flattening is indeed caused by the systemic rotation rather than tidal interactions with the Galaxy. Additionally, we estimate the dynamical mass of the GC M_dyn=2.0+/-0.5 x 10^5 M_Sun based on the dynamical model, which constrains the mass-to-light ratio of NGC 4372 between 1.4 and 2.3 M_Sun/L_Sun, representative of an old, purely stellar population.Comment: Accepted for publication in A&A, 12 pages, 14 figures, 2 table

    Charge-density Waves Survive the Pauli Paramagnetic Limit

    Full text link
    Measurements of the resistance of single crystals of (Per)2_2Au(mnt)2_2 have been made at magnetic fields BB of up to 45 T, exceeding the Pauli paramagnetic limit of BP≈37B_{\rm P}\approx 37 T. The continued presence of non-linear charge-density wave electrodynamics at B≥37B \geq 37 T unambiguously establishes the survival of the charge-density wave state above the Pauli paramagnetic limit, and the likely emergence of an inhomogeneous phase analogous to that anticipated to occur in superconductors.Comment: 4 pages, three figure

    Topological change of the Fermi surface in ternary iron-pnictides with reduced c/a ratio: A dHvA study of CaFe2P2

    Full text link
    We report a de Haas-van Alphen effect study of the Fermi surface of CaFe2P2 using low temperature torque magnetometry up to 45 T. This system is a close structural analogue of the collapsed tetragonal non-magnetic phase of CaFe2As2. We find the Fermi surface of CaFe2P2 to differ from other related ternary phosphides in that its topology is highly dispersive in the c-axis, being three-dimensional in character and with identical mass enhancement on both electron and hole pockets (~1.5). The dramatic change in topology of the Fermi surface suggests that in a state with reduced (c/a) ratio, when bonding between pnictogen layers becomes important, the Fermi surface sheets are unlikely to be nested

    Quantum oscillations in the parent pnictide BaFe2_2As2_2 : itinerant electrons in the reconstructed state

    Full text link
    We report quantum oscillation measurements that enable the direct observation of the Fermi surface of the low temperature ground state of \ba122. From these measurements we characterize the low energy excitations, revealing that the Fermi surface is reconstructed in the antiferromagnetic state, but leaving itinerant electrons in its wake. The present measurements are consistent with a conventional band folding picture of the antiferromagnetic ground state, placing important limits on the topology and size of the Fermi surface.Comment: 5 pages, 3 figure
    • …
    corecore