100 research outputs found

    Building models from multiple point sets with kernel density estimation

    Get PDF
    One of the fundamental problems in computer vision is point set registration. Point set registration finds use in many important applications and in particular can be considered one of the crucial stages involved in the reconstruction of models of physical objects and environments from depth sensor data. The problem of globally aligning multiple point sets, representing spatial shape measurements from varying sensor viewpoints, into a common frame of reference is a complex task that is imperative due to the large number of critical functions that accurate and reliable model reconstructions contribute to. In this thesis we focus on improving the quality and feasibility of model and environment reconstruction through the enhancement of multi-view point set registration techniques. The thesis makes the following contributions: First, we demonstrate that employing kernel density estimation to reason about the unknown generating surfaces that range sensors measure allows us to express measurement variability, uncertainty and also to separate the problems of model design and viewpoint alignment optimisation. Our surface estimates define novel view alignment objective functions that inform the registration process. Our surfaces can be estimated from point clouds in a datadriven fashion. Through experiments on a variety of datasets we demonstrate that we have developed a novel and effective solution to the simultaneous multi-view registration problem. We then focus on constructing a distributed computation framework capable of solving generic high-throughput computational problems. We present a novel task-farming model that we call Semi-Synchronised Task Farming (SSTF), capable of modelling and subsequently solving computationally distributable problems that benefit from both independent and dependent distributed components and a level of communication between process elements. We demonstrate that this framework is a novel schema for parallel computer vision algorithms and evaluate the performance to establish computational gains over serial implementations. We couple this framework with an accurate computation-time prediction model to contribute a novel structure appropriate for addressing expensive real-world algorithms with substantial parallel performance and predictable time savings. Finally, we focus on a timely instance of the multi-view registration problem: modern range sensors provide large numbers of viewpoint samples that result in an abundance of depth data information. The ability to utilise this abundance of depth data in a feasible and principled fashion is of importance to many emerging application areas making use of spatial information. We develop novel methodology for the registration of depth measurements acquired from many viewpoints capturing physical object surfaces. By defining registration and alignment quality metrics based on our density estimation framework we construct an optimisation methodology that implicitly considers all viewpoints simultaneously. We use a non-parametric data-driven approach to consider varying object complexity and guide large view-set spatial transform optimisations. By aligning large numbers of partial, arbitrary-pose views we evaluate this strategy quantitatively on large view-set range sensor data where we find that we can improve registration accuracy over existing methods and contribute increased registration robustness to the magnitude of coarse seed alignment. This allows large-scale registration on problem instances exhibiting varying object complexity with the added advantage of massive parallel efficiency

    Predicting Slice-to-Volume Transformation in Presence of Arbitrary Subject Motion

    Full text link
    This paper aims to solve a fundamental problem in intensity-based 2D/3D registration, which concerns the limited capture range and need for very good initialization of state-of-the-art image registration methods. We propose a regression approach that learns to predict rotation and translations of arbitrary 2D image slices from 3D volumes, with respect to a learned canonical atlas co-ordinate system. To this end, we utilize Convolutional Neural Networks (CNNs) to learn the highly complex regression function that maps 2D image slices into their correct position and orientation in 3D space. Our approach is attractive in challenging imaging scenarios, where significant subject motion complicates reconstruction performance of 3D volumes from 2D slice data. We extensively evaluate the effectiveness of our approach quantitatively on simulated MRI brain data with extreme random motion. We further demonstrate qualitative results on fetal MRI where our method is integrated into a full reconstruction and motion compensation pipeline. With our CNN regression approach we obtain an average prediction error of 7mm on simulated data, and convincing reconstruction quality of images of very young fetuses where previous methods fail. We further discuss applications to Computed Tomography and X-ray projections. Our approach is a general solution to the 2D/3D initialization problem. It is computationally efficient, with prediction times per slice of a few milliseconds, making it suitable for real-time scenarios.Comment: 8 pages, 4 figures, 6 pages supplemental material, currently under review for MICCAI 201

    Tunable Convolutions with Parametric Multi-Loss Optimization

    Get PDF

    Tunable Convolutions with Parametric Multi-Loss Optimization

    Get PDF
    • …
    corecore