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Abstract

Density-based Out-of-distribution (OOD) detection has recently been shown un-
reliable for detecting OOD images. Various density ratio-based approaches have
achieved good empirical performance. However, these methods typically lack
a principled probabilistic modeling explanation. We propose to unify density
ratio-based methods under a novel energy-based model framework that allows
us to view the density ratio as the unnormalized density of an implicit semantic
distribution. Further, we propose to directly estimate the density ratio through class
ratio estimation, which can achieve competitive OOD detection results without
training any deep generative models. Our approach enables a simple yet effective
path towards solving OOD detection problems in the image domain.

1 Unsupervised OOD Detection

Machine learning methods often assume that training and testing data originate from the same
distribution. However, in many real world applications, we have little control over the data source
with the consequence that unexpected testing data can cause model failures. Therefore, detecting
Out-of-distribution (OOD) data is critical for safe and reliable machine learning applications.

We are interested in the unsupervised OOD detection setting. Formally, given an in-distribution dataset
Din = {x1, . . . , xN}, we aim to learn an OOD detector which can be formalised as an indicator
function that maps a data x to {0, 1}: Dϵ(x) = 0 if s(x) < ϵ and Dϵ(x) = 1 if s(x) ≥ ϵ, where ϵ is a
hyper-parameter which represents the confidence threshold and s(x) is a score function representing
whether or not a data x is likely to be an in-distribution sample. In practice, the threshold ϵ can be
determined e.g. using the validation dataset. For evaluation, the Area Under the Receiver Operating
Characteristics (AUROC) is calculated using the ID and OOD test datasets [10], automatically
incorporating the consideration of different choices of ϵ value. Higher AUROC indicates that the
detector has a better ability to discriminate between ID and OOD data.

For the unsupervised OOD detection problem, a natural strategy is to learn a model pθ(x) to fit the
in-distribution dataset Din. The parameters θ can be learned by Maximum Likelihood Estimation
θ∗ = argmaxθ

1
N

∑N
n=1 log pθ(xn). For a given test data x′, the density evaluation under the learned

model pθ∗(x′) can be used as the score function for the OOD detection s(x′) ≡ pθ∗(x′). In this
case, lower density indicates that test data is more likely to be OOD [2]. Popular choices for the
model pθ are deep generative models such as Flow models [12, 14], latent variable models [13]
or auto-regressive models [29]. However, recent work [23] shows the surprising result that deep
generative models may assign higher density values to OOD data, that contain differing semantics,
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c.f . the ID data that was used for maximum likelihood training, see Appendix A for a demonstration.
Recently, many density ratio based methods are proposed [26, 14, 8, 41] and achieve empirical
success, where the score function is typically defined as the density ratio between two generative
models with differing model structure. In the next section, we propose an energy-based model
framework that enables a unified view of the recently proposed density ratio methods.

2 Unifying Density Ratio Methods with Energy-based Models

Recent work [41] proposes to model the ID data using a product of local and non-local models and
show that the non-local model may be considered a model of the data semantics. Here, we generalise
this idea and define a general energy-based model for the ID data, which in turn allows us to view
other density ratio-based OOD detection methods as implicitly building semantic models on the
in-distribution dataset. We propose to model the in distribution pin with an energy-based model

pin(x) = pbase(x)s(x)/Zin, with Zin =

∫
pbase(x)s(x)dx, (1)

where pbase is the ‘base distribution’ [1] and s(x) is a positive function that gives high score for
the image x whose semantics belongs to the in-distribution pin, such that the score function may
be thought of in this case as a ‘semantic score’. A semantic distribution ps(x) can then be further
defined as the normalised score function

ps(x) = s(x)/Zs with Zs =

∫
s(x)dx. (2)

Therefore, the semantic density ps(x) can then be used to conduct semantic-level OOD detection.
Since estimating the Zs is not necessary for OOD detection tasks and the score function is proportional
to the density ratio such that s(x) ∝ pin(x)/pbase(x), so utilising the density ratio; pin(x)/pbase(x) is
equivalent to using the semantic distribution ps(x) density value in the OOD detection task.

Several density-ratio based OOD methods [41, 30, 31, 8, 30] can be unified under our energy-based
model framework with different choices of pbase, see Appendix B for a detailed discussion. However,
all such density estimation methods require the training of either one or two generative models
to approximate pbase or pin. We argue that if the goal is to estimate the density ratio; training of
complex generative models is not necessary. We propose to estimate the density ratio using the
well-known class ratio estimation [33, 25, 7], which only requires learning of a binary classifier and
thus significantly simplifies the OOD detection workflow during both training and testing procedures.

3 Model-Free Class Ratio Estimation

We denote distributions pin(x) and pbase(x) as two conditional distributions p(x|y = 1) and
p(x|y = 0) respectively, such that the semantic score can be written as

s(x) = pin(x)/pbase(x) = p(x|y = 1)/p(x|y = 0). (3)
We define a mixture distribution p(x) as p(x) ≡ p(x|y = 1)p(y = 1) + p(x|y = 0)p(y = 0), where
the Bernoulli prior distribution p(y) represents the mixture proportions. We can further assume a
uniform prior p(y = 1) = p(y = 0) = 0.5 and rewrite Equation 3 using Bayes rule

pin(x)

pbase(x)
=

p(x|y = 1)

p(x|y = 0)
=

p(y = 1|x)���p(x)

����p(y = 1)

/p(y = 0|x)���p(x)

����p(y = 0)
=

p(y = 1|x)
p(y = 0|x)

. (4)

We are then ready to estimate the ratio using a binary classifier. We initially sample labelled data
from p(x, y) = p(x|y)p(y) by firstly sampling label y′ ∼ p(y) and the corresponding data samples
x′ ∼ p(x|y = y′). This is equivalent to sampling x′ ∼ pin when y′ = 1 and x′ ∼ pbase when y′ = 0.
The specified uniform prior p(y) represents the probabilities to sample from pin or pbase, which are
equal. The generated data pairs are then used to train a probabilistic classifier pθ(y|x) with the cross
entropy loss, which has been shown to minimize the Bregman divergence between the ratio estimation
pθ(y = 1|x)/pθ(y = 0|x) and the true density ratio [22].

After training the classifier, the density ratio estimator pθ(y=1|x)
1−pθ(y=1|x) can be used to perform OOD

detection, thus avoiding the training of high-dimensional generative models. It may be observed that
the class ratio estimation scheme requires samples from both distributions; pin and pbase. The data
samples of the in-distribution pin are already provided. We next discuss how to obtain samples from
pbase, according to the differing base distribution assumptions that were discussed in Section 2.
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3.1 Construction of the Base Distribution

As previously discussed, training a binary classifier to estimate the ratio requires the samples from
both pin and pbase. Samples from pin are just the in-distribution training dataset Din, which is given in
the OOD detection task. We further discuss how to obtain the samples from pbase. In Appendix B,
we propose that existing OOD ratio methods can be viewed as building energy-based model with
different pbase distributions (Section 2). Specifically, these methods fall into two categories namely;
(1) local model and (2) universal model base distributions. Therefore, we propose two corresponding
methods to construct the samples from pbase, to form a dataset Dbase.

• Local Model as Base Distribution To construct samples from a local model, we propose to
crop and resize the images from the given in-distribution dataset Din. Intuitively, croping
and resizing will preserve the local features, so the resulting images can be treated as the
samples from a local model. We denote the resulting dataset as Dlocal

base .
• Universal Model as Base Distribution The construction of samples from the universal

model is more straightforward. We can simply use a large image dataset, e.g. 80 million tiny
ImageNet [11] as our base distribution. We denote this large image data by Duni

base.

Under our model assumption described in Section 2, the support of pbase should contain the support of
pin, we thus intentionally include the samples from Din into the base distribution dataset by defining
Dbase = Dlocal

base ∪ Din or Dbase = Duni
base ∪ Din. Further experimental details can be found in Section 4.

3.2 Spread Density Ratio Score

The semantic score that is used for OOD detection is defined by the density ratio
s(x) ∝ pin(x)/pbase(x). For a test data xtest /∈ supp(pbase)

2, then pbase(xtest) = 0 and the ratio is
not defined. Ideally, we want pbase(xtest) to have support that covers all possible xtest. One solution is
to add convolutional Gaussian noise p̃base = pbase ∗ pn, where pn is an isotropic Gaussian distribution
with mean 0 and variance σ2ID, with data space dimension D. However, when using class-ratio
estimation, there is a danger that the classifier can easily distinguish between samples from two
distributions by simply considering the noise level, resulting in a poor estimation of the density ratio.
This phenomenon is referred to as the “density-chasm” problem [27], in the class ratio estimation
literature. To alleviate this problem, we propose to add the same convolutional noise to the distribution
pin: p̃in = pin ∗ pn. We can then define the spread density ratio score s̃:

s̃(x) =
p̃in(x)

p̃base(x)
=

(pin ∗ pn)(x)
(pbase ∗ pn)(x)

. (5)

When σ2 is small, we assume that adding small pixel-wise noise to an image will not change
the underlying semantics. Therefore s̃(x) can still provide a valid representation of the semantic
score. The name spread density ratio is inspired by recent work on spread divergences [40], where
convolutional noise is added to two distributions with different supports in order to define a valid KL
divergence. Adding noise to the samples from two distributions has also been used to stabilize the
training of GANs [32]. Appendix C provides empirical evidence to support the idea that the spread
density ratio can significantly improve OOD detection results.

4 Experiments

Comparison Between Two Base Distributions We compare two base distributions (local and
universal) introduced in Section 3.1. For the local model, samples are constructed by random cropping
and resizing, resulting images are denoted as Dlocal

base , additional details can be found in Appendix D.2.
For the universal model, we use a 300K cleaned subset of the 80 Million Tiny Images dataset [34, 11]
to serve as our universal model samples and additionally convert the dataset to grey-scale for the
grey-scale experiments. Table 1 shows the AUROC comparison for two pbase constructions. We find
that our local model sample construction can achieve strong results in a subset of the cases whereas
the samples from the universal model achieve strong performance in all experiments. We conjecture
that our constructed local samples cannot comprehensively characterise the underlying local model
(i.e. a model which can assign positive density to all images with valid features). We believe the
question of how to construct better local samples to be a promising future research direction.

2We use supp(p) to denote the support of distribution p.
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Table 1: Comparison between local model and universal model as base distribution.

ID dataset OOD Local Universal

FMNIST

MNIST 73.1 97.3
NotMNIST 89.2 99.3
KMNIST 69.0 95.8
Omniglot 100.0 100.0

MNIST

FMNIST 99.5 100.0
NotMNIST 99.0 99.3
KMNIST 90.1 95.8
Omniglot 100.0 100.0

ID dataset OOD Local Universal

CIFAR10

SVHN 98.0 98.2
CIFAR100 54.7 85.9

LSUN 37.0 97.3
CelebA 58.3 96.5

CIFAR100

SVHN 98.2 87.9
CIFAR10 47.7 64.4

LSUN 95.0 83.8
CelebA 38.5 90.5

Table 2: AUROC comparisons of approaches that use the 80 Million Tiny Images dataset. Both Outlier
Exposure (OE) [11] and Tiny-Glow/PCNN [30] require training generative models. We observe our
method achieves competitive performance without requiring any generative model training.

ID OOD OE [11] Tiny-Glow [30] Tiny-PCNN [30] Ours

CIFAR10
SVHN 75.8 93.9 94.4 98.2

CIFAR100 68.5 66.8 63.5 85.9
LSUN 90.9 89.2 92.9 97.3

CIFAR100
SVHN - 87.4 90.0 87.9

CIFAR10 - 52.8 54.5 64.4
LSUN - 81.0 87.6 83.8

Table 3: AUROC comparisons. We report the
number of generative models used by alternative
approaches. It may be observed that our model
achieves relatively strong performance, (uniquely)
without use of any generative models. Results
for the Typicality test [31] correspond to batches
of two samples of the same type. All results are
averaged over five runs.

ID: FMNIST CIFAR10 Gen.
OOD : MNIST SVHN

WAIC [4] 76.6 100.0 5
Like. Regret [37] 98.8 87.5 1
HVAE [8] 98.4 89.1 1
MSMA KD [21] 69.3 99.1 1
OE [11] - 75.8 1

Density Ratio-based Methods
Like. Ratio[26] 99.7 91.2 2
Glow/PNG [30] - 75.4 1
PCNN/PNG [30] - 82.3 1
Glow/FLIF [31] 99.8 95.0 1
PCNN/FLIF [31] 96.7 92.9 1
Global/Local[41] 100.0 96.9 2
Glow/Tiny [30] - 93.9 2
PCNN/Tiny [30] - 94.4 2
Ours-Local 73.1 97.2 0
Ours-Universal 97.3 98.2 0

Comparisons with Other Methods We com-
pare our approach, that defines pbase using the
universal model, with methods that also assume
access to the Tiny-imagenet dataset, see Table 2.
We observe that our method achieves improved
performance in four out of six ID-OOD pairs
(see Fig. 3 in the Appendix for the correspond-
ing histogram plots). Tiny-PCNN [30] achieves
better performance in two data pairs, however,
in contrast to our approach, the method requires
training of two deep generative models. We
also compare our method to other recently pro-
posed unsupervised OOD detection approaches,
including density ratio methods. In Table 3, we
report the number of generative models that each
method requires to train. We observe that our
method, with universal model, achieves competi-
tive performance without training any generative
models, providing computational efficiency.

5 Conclusion

We propose an energy-based framework that af-
fords a unified modelling view of the recently
proposed density-ratio based OOD methods. We
further propose the use of class ratio estimation
to estimate the density ratio, which does not re-
quire the training of complex generative models
and yet achieves competitive OOD detection results, in comparison with the state-of-the-art. Our
work gives rise to new potential directions e.g. more rigorous investigation of how to construct pbase.
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A A Failure Example of Likelihood-based OOD Detection

Figure 1 shows an example of this effect where PixelCNN models trained on Fashion MNIST,
CIFAR10 induce higher test likelihoods when evaluated on MNIST, SVHN respectively.

−6 −4 −2 0

Fashion (ID)

MNIST (OOD)

−6 −5 −4 −3 −2 −1

CIFAR (ID)

SVHN (OOD)

Figure 1: The left plot shows a PixelCNN model that is trained on FashionMNIST and tested on
FashionMNIST (ID) and MNIST (OOD); the right plot show a PixelCNN model that is trained on
CIFAR10 and tested on CIFAR10 (ID) and SVHN (OOD). The x-axis indicates the log-likelihood
normalised by the data dimension and y-axis represents the data counts. We can observe that OOD
datasets consistently obtain higher test likelihood than ID datasets. Plots are derived from [41].

B Unifying Related Works

Several density-ratio based OOD methods can be unified under Equation 1 and the corresponding
score can be explained as the (unnormalised) density of a semantic distribution that is defined by
Equation 2. In the following methods that we discuss, pin constitutes a generative model that is learned
to fit the in-distribution data. Additionally various pbase(x) have been proposed in the literature,
which we also summarise below.

One definition of the base distribution pbase(x) involves assigning positive density for images with
valid local features, where the ‘local feature’ are defined as the features that are learned by a local
model. For example, in [41], an autoregressive model with a constrained dependency horizon ,
proposed to only be capable of capturing local pixel dependency (local features), is learned to realise
pbase(x). Similarly, [30, 31] propose to use classic lossless compressors, e.g. PNG or FLIF, to play
the role of the local model. Since the PNG or FLIF format only use the neighbouring pixels to
predict the target pixel [3], the resulting coding length for a given data x is approximately equal to
the negative log-likelihood of a local model3. In [8], the base model is defined as a hierarchical VAE
which ignores the deeper latent variable that incorporates the high-level features, so that the positive
mass is assigned to images with valid low-level (local) features learned in the shallow latent.

The base distribution pbase(x) can also be defined to simply assign mass to all valid images in a
certain domain. For example, if the in-distribution data were to consist of images containing horses,
the domain can be defined as the distribution of animals. In practice, pbase(x) is learned to fit a large
image dataset which can represent the domain. The work of [30] used Flow+ [12] and PixelCNN [35]
models, fitted to very large datasets, e.g. 80 Million Tiny Images dataset [6]. We refer to such
distributions as universal models.

In comparison with the approaches surveyed so far, we note that the likelihood ratio method proposed
by [26] does not fall under this framework. The authors alternatively assume that each data sample x
can be factorised into two distinct components x = {xb, xs}, where xb is a ‘background component’,
which is characterized by population level background statistics and xs a ‘semantic component’,
which is characterized by patterns specific to the in-distribution data [26]. Two independent models
p(xb), p(xs) are then trained to model the two respective components. In contrast, our framework
assumes that both functions pbase(x), s(x) are supported on the x space.

3See [20] for an introduction to the relationship between probabilistic modelling and lossless compression.
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C Effectiveness of Spread Density Ratio Score

As discussed in Section 3.2, we add Gaussian noise to both pin and pbase in the training stage and
use the resulting spread density ratio to represent the semantic density. We apply Gaussian noise
with standard deviation 0.1 for both greyscale and colour image experiments. For pbase, we use a
universal model (described in Section 3.1). Universal model sample construction details can be found
in Section 4. Fig. 2 compares the test AUROC after each training epoch. We see that adding spread
noise can significantly improve the distinguishability and training stability, for both datasets.

0.4

0.6

0.8

1

Fashion vs notMNIST

w noise
w/o noise

0

0.5

1

Fashion vs MNIST

0.2

0.4

0.6

0.8

1

Fashion vs KMNIST

0.6

0.8

1

CIFAR10 vs CelebA

0.7

0.8

0.9

1

CIFAR10 vs SVHN

0.6

0.8

1

CIFAR10 vs LSUN

1

Figure 2: AUROC per epoch. The x-axis represents 1000 training epochs and y-axis represents the
AUROC. The model is trained on Din = FashionMNIST / CIFAR10 and Dbase = 80 Million Tiny
Images, then tested on the corresponding OOD datasets. We show that adding convolutional noise
results in significantly more stable AUROC results.

D Experiment Details

D.1 Neural Network Structure and Training Details

As introduced in Section 3, our model is a binary classifier estimating p(y = 1|x). We use ResNet-
18 [9] for greyscale experiments and WideResNet-28-10 [39] for colour image experiments. The
classifiers are trained for 1000 epochs using a learning rate of 0.01, batch size of 256, and a Stocastic
Gradient Descent(SGD) optimizer [28] with momentum = 0.9. The implementation can be found in
our anonymous public repo4. All experiments are conducted on a NVIDIA Tesla V100 GPU.

D.2 Local Model Samples Constructions Details

In this section, we compare two base distributions introduced in Section 3.1: namely the local model
and universal model. For the local model, samples are constructed by random cropping and resizing.
In greyscale experiments, we crop the 28×28 images from Dtrain

in into 14×14 / 16×16 / . . . / 24×24
/ 26× 26 images randomly, and then resize back to 28× 28 using bilinear interpolation. Similarly, in
colour image experiments, we crop the 32× 32 images into 16× 16 / . . . / 30× 30 images randomly,
then resize back to the original size, analogously.

4https://github.com/andiac/OODClassRatioEstimation
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Figure 3: Histograms of the log density ratios on the test datasets when Dbase is a universal model.
We use red to indicate the in-distribution test set Dtest

in and other colours represent different OOD
test datasets Dtest

out . The x-axis is the log density ratio and the y-axis is the corresponding counts.
We observe, for relatively better cases (MNIST / FashionMNIST / CIFAR10 as in-distribution), the
density ratios of Dtest

in are concentrated, while in the CIFAR100 case, the density ratios of Dtest
in are

spread out, with a large overlap with the density ratios of Dtest
out , leading to a relatively small AUROC.

E Datasets

MNIST The MNIST (Modified National Institute of Standards and Technology) dataset [17] is of
70,000 28× 28 pixel greyscale images of handwritten digits between 0 and 9 (60,000 for training and
10,000 for testing). The MNIST dataset is made available under the terms of the Creative Commons
Attribution-Share Alike 3.0 Licence (CC BY-SA 3.0).

FashionMNIST FashionMNIST [36] is a dataset of Zalando’s article images, which has a training
set of 60,000 datapoints and a test set of 10,000 datapoints. Each datapoint is a 28× 28 greyscale
image, associated with a label. The FashionMNIST dataset is under MIT License.

CIFAR10 and CIFAR100 The CIFAR5 (CIFAR10 and CIFAR100) [15] are labeled subsets of the
80 Million Tiny Images dataset [6]. CIFAR10 consists of 60,000 32× 32 colour images in 10 classes,
where 50,000 of them are training images and 10,000 are test images. CIFAR100 has 100 classes
containing 600 images each. For each class, there are 500 training images and 100 testing images.
The CIFAR dataset is under MIT License.

OMNIGLOT OMNIGLOT [16] contains 1623 different handwritten characters from 50 different
alphabets. Each character was written by 20 different people, which means it has 1623 classes with
20 datapoints each. The original images are of size 105× 105, which is resized to 28× 28 in this
work. The OMNIGLOT dataset is under MIT License.

KMNIST The KMNIST dataset [5] contains 10 classes of hand-written Hiragana characters.
Similar to MNIST, for each character, it has 6,000 datapoints for training and 1,000 datapoints for

5CIFAR is short for Canadian Institute for Advanced Research.
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testing. The KMNIST dataset is licensed under the Creative Commons Attribution Share-Alike 4.0
International License (CC BY-SA 4.0).

notMNIST The notMNIST is a dataset of font glypyhs for the letters A through J. The image size
is 28× 28 pixels. In detail, notMNIST-large contains 529,119 images and notMNIST-small contains
18726 images. In this work, we use the first 10,000 images of notMNIST-small as our OOD dataset.
The notMNIST dataset is under MIT License.

SVHN The Street View House Numbers (SVHN) dataset [24] contains 32× 32 color images with
ten classes comprised of the digits 0-9. The training set has 604,388 images, and the test set has
26,032 images. The SVHN dataset is under CC0 1.0 Universal Public Domain Dedication License
(CC0 1.0).

LSUN The Large-scale Scene Understanding (LSUN) [38] classification dataset contains 10 scene
categories, each category contains a huge number of images, ranging from around 120,000 to
3,000,000. Following ODIN [18], in this work we use a picked (10,000 images) and resized (32× 32)
version of LSUN. The LSUN dataset do not have any license.

CelebA The CelebFaces Attributes Dataset (CelebA) [19] is a large-scale face attributes dataset
with more than 200K celebrity images. In this work, we just pick the first 10,000 images of the dataset
and resize it to 32× 32. The CelebA dataset is available for non-commercial research purposes only.
The CelebA dataset may contain personal identifications.

80 Million Tiny Images The 80 Million Tiny Images [34] contains 79,302,017 images collected
from the Web. The images are stored as 32×32 color images. In this work, we use a 300K subset [11]
of the 80 Million Tiny Images. The 80 Million Tiny Images dataset is under CC0 1.0 Universal Public
Domain Dedication License (CC0 1.0).
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