27 research outputs found

    Climate Change Impacts on Rice Farming Systems in Northwestern Sri Lanka

    Get PDF
    Sri Lanka has achieved tremendous progress since 1950 in crop production and food availability. Yields grew at an impressive rate until leveling off in the mid-eighties. Sri Lanka's population is anticipated to grow in the coming decades, creating an ever-greater demand for food security on the household, sub-district, regional, and national scales.The agricultural sector in Sri Lanka is vulnerable to climate shocks. An unusual succession of droughts and floods from 2008 to 2014 has led to both booms and busts in agricultural production, which were reflected in food prices. In both instances, the majority of farmers and consumers were adversely affected.At present the rice-farming systems are under stress due to inadequate returns for the farmers and difficulty in coping with shocks due to climate, pests, and diseases, and prices for produce. There are government price-support mechanisms, fertilizer-subsidy schemes, and crop insurance schemes, but the levels of the supports are modest and often do not effectively reach the farmers

    The Impact of Drought on Terrestrial Carbon in the West African Sahel: Implications for Natural Climate Solutions

    No full text
    Terrestrial ecosystems store more than twice the carbon of the atmosphere, and are critical to climate change mitigation efforts. This has led to a proliferation of land-based carbon sequestration efforts, such as re/afforestation associated with the Great Green Wall in the West African Sahel (WAS GGW). However, we currently lack comprehensive assessments of the long-term viability of these ecosystems' carbon storage in the context of increasingly severe climate extremes. The WAS is particularly prone to recurrent and disruptive extremes, exemplified by the persistent and severe late-20th century drought. We assessed the response and recovery of WAS GGW carbon stocks and fluxes to this late-20th century drought, and the subsequent rainfall recovery, by leveraging a suite of terrestrial ecosystem models. While multi-model mean carbon fluxes (e.g., gross primary production, respiration) partly recovered to pre-drought levels, modeled total (above and below ground) ecosystem carbon stock falls to as much as two standard deviations below pre-drought levels and does not recover even ∼20 years after the maximum drought anomaly. Furthermore, to the extent that the modeled regional carbon stock recovers, it is nearly entirely driven by atmospheric CO2 trends rather than the precipitation recovery. Uncertainties in regional ecosystem carbon simulation are high, as the models' carbon responses to drought displayed a nearly 10-standard deviation spread. Nevertheless, the multi-model average response highlights the strong and persistent impact of drought on terrestrial carbon storage, and the potential risks of relying on terrestrial ecosystems as a “natural climate solution” for climate change mitigation

    Responses of compound daytime and nighttime warm-dry and warm-humid events to individual anthropogenic forcings

    No full text
    Daytime heat is often associated with reduced soil moisture and cloud cover, while nighttime heat is connected to high humidity and increased cloud cover. Due to these differing mechanisms, compound daytime and nighttime heat events may respond differently to major anthropogenic forcings (greenhouse gases, anthropogenic aerosols, land-use and land-cover change). Here, we use GISS ModelE2.1-G historical single-forcing runs from 1955 to 2014 to examine how individual anthropogenic forcings affect compound heat events—specifically warm daytime and nighttime temperatures compounded with dry precipitation or high humidity conditions. We show that greenhouse gases alone amplify the natural frequency of warm-dry events by 1.5–5 times and warm-humid events by 2–9 times in tropical and extratropical latitudes. Conversely, aerosols and land-use/land-cover change reduce the frequency of these events, resulting in more modest increases and in some regions, declines, in the historical ‘all-forcings’ scenario. Individually, aerosol effects are stronger and more widespread compared to land-use, oftentimes reducing the natural frequency of these events by 60%–100%. The responses of these compound events are primarily driven by changes in daytime and nighttime temperatures through large-scale warming via greenhouse gases and cooling from aerosols and land-use/land-cover change. However, changes in warm-dry events are amplified in regions with concurrent precipitation declines (e.g. Central America, Mediterranean regions) and warm-humid events are amplified by global concurrent humidity increases. Additionally, we find differences between daytime and nighttime compound responses in the historical experiment that can be traced back to the individual forcings. In particular, aerosols produce a greater cooling effect on daytime relative to nighttime temperatures, which notably results in a historical reduction of Northern Hemisphere daytime warm-dry events relative to natural conditions. Our analysis provides a more comprehensive understanding of the significant impacts of different anthropogenic climate forcings on daytime and nighttime warm-dry and warm-humid events, informing future risk and impact assessments

    Integrated Assessments of the Impact of Climate Change on Agriculture: An Overview of AgMIP Regional Research in South Asia

    Get PDF
    South Asia encompasses a wide and highly varied geographic region, and includes climate zones ranging from the mountainous Himalayan territory to the tropical lowland and coastal zones along alluvial floodplains. The region's climate is dominated by a monsoonal circulation that heralds the arrival of seasonal rainfall, upon which much of the regional agriculture relies. The spatial and temporal distribution of this rainfall is, however, not uniform over the region. Northern South Asia, central India, and the west coast receive much of their rainfall during the southwest monsoon season, between June and September. These rains partly result from the moisture transport accompanying the monsoonal winds, which move in the southwesterly direction from the equatorial Indian Ocean. Regions further south, such as south/southeast India and Sri Lanka, may receive rains from both the southwest monsoon, and also during the northeast monsoon season between October and December (with northeasterly monsoon wind flow and moisture flux), which results in a bi- or multi-modal rainfall distribution. In addition, rainfall across South Asia displays a large amount of intraseasonal and interannual variability. Interannual variability is influenced by many drivers, both natural (e.g., El Ni-Southern Oscillation; ENSO) and man-made (e.g., rising temperatures due to increasing greenhouse gas concentrations), and it is challenging to obtaining accurate time-series of annual rainfall, even amongst various observed data products, which display inconsistencies amongst themselves. These climatic and rainfall variations can further complicate South Asia's agricultural and water management. Agriculture employs at least 65 of the workforce in most South Asian countries, and nearly 80 of South Asia's poor inhabit rural areas. Understanding the response of current agricultural production to climate variability and future climate change is of utmost importance in securing food and livelihoods for South Asia's growing population. In order to assess the future of food and livelihood security across South Asia, the Agricultural Model Intercomparison and Improvement Project (AgMIP) has undertaken integrated climate-crop-economic assessments of the impact of climate change on food security and poverty in South Asia, encompassing Bangladesh, India, Nepal, Pakistan, and Sri Lanka. AgMIP has funded, on a competitive basis, four South Asian regional research teams (RRTs) and one South Asian coordination team (CT) to undertake climate-crop-economic integrated assessments of food security for many districts in each of these countries, with the goal of characterizing the state of food security and poverty across the region, and projecting how these are subject to change under future climate change conditions

    Not Available

    No full text
    Not AvailableThe impact of climate change on agricultural crops is a major concern and threats to the global food security. It also limits the potential of crops and cropping system in a given area. Therefore, the present study was aimed to assess the combined effect of positive (CO2 fertilization, lesser temperature and higher rainfall) and negative (higher temperature, lower rainfall) impacts of the futuristic climatic scenarios on productivity of soybean using APSIM (Agricultural Production Systems sIMulator) model. We have followed the Climate-Crop Modeling Project (C3MP) methodology and generated ninety-nine sensitive test to achieve each test’s temperature, rainfall and CO2 concentration range. Using 30 years of climate data (1980-2010) of Central India as base, the simulation results showed that increasing CO2 concentrations alone resulted in increased soybean yield. Similarly, reduction in rainfall amount indicated negative impact on it. This effect further compounded with increase in temperature and thus, reduced soybean yield. Increasing the temperature with 10% decrease in rainfall declined the soybean yield by 10%. Whereas, increase in temperature along with increase in rainfall also not resulted favorably soybean growth. Decreasing the temperature from the base by 1oC and increasing the rainfall by more than 10% benefitted the soybean productivity, whereas increasing the temperature by 1oC with no change in rainfall resulted decline in soybean productivity by 10-15%.Not Availabl
    corecore