2,837 research outputs found

    Velocity Visualization in Gaseous Flows

    Get PDF
    Techniques yielding simultaneous, multiple point measurements of velocity in reacting or nonreacting flow fields have the potential to significantly impact basic and applied studies of fluid mechanics. Several candidate schemes which could provide such measurement capability were investigated. The concepts utilize laser sources which lead to scattered light which can be monitored by a film based camera or a multielement solid state camera. Velocity measurements in supersonic flows using a novel Doppler modulated fluorescence concept are presented

    Secure Distributed Virtual Conferencing: Multicast or Bust

    Full text link
    We describe a secure distributed virtual conferencing application (SDVC) that provides high quality streaming video and audio using IP multicast for efficient distribution, using strong authentication via cryptographic means and optionally providing fully encrypted communication without sacrificing quality of the medium or the user experience. We summarize our experiences with SDVC in a recent live demonstration and conclude with a discussion of future plans.http://deepblue.lib.umich.edu/bitstream/2027.42/107912/1/citi-tr-99-1.pd

    Formation of plasma around a small meteoroid: 1. Kinetic theory

    Full text link
    This article is a companion to Dimant and Oppenheim [2017] https://doi.org/10.1002/2017JA023963.This paper calculates the spatial distribution of the plasma responsible for radar head echoes by applying the kinetic theory developed in the companion paper. This results in a set of analytic expressions for the plasma density as a function of distance from the meteoroid. It shows that at distances less than a collisional mean free path from the meteoroid surface, the plasma density drops in proportion to 1/R where R is the distance from the meteoroid center; and, at distances much longer than the mean‐free‐path behind the meteoroid, the density diminishes at a rate proportional to 1/R2. The results of this paper should be used for modeling and analysis of radar head echoes.This work was supported by NSF grant AGS-1244842. (AGS-1244842 - NSF

    Inverse-kinematics one-neutron pickup with fast rare-isotope beams

    Get PDF
    New measurements and reaction model calculations are reported for single neutron pickup reactions onto a fast \nuc{22}{Mg} secondary beam at 84 MeV per nucleon. Measurements were made on both carbon and beryllium targets, having very different structures, allowing a first investigation of the likely nature of the pickup reaction mechanism. The measurements involve thick reaction targets and γ\gamma-ray spectroscopy of the projectile-like reaction residue for final-state resolution, that permit experiments with low incident beam rates compared to traditional low-energy transfer reactions. From measured longitudinal momentum distributions we show that the \nuc{12}{C} (\nuc{22}{Mg},\nuc{23}{Mg}+\gamma)X reaction largely proceeds as a direct two-body reaction, the neutron transfer producing bound \nuc{11}{C} target residues. The corresponding reaction on the \nuc{9}{Be} target seems to largely leave the \nuc{8}{Be} residual nucleus unbound at excitation energies high in the continuum. We discuss the possible use of such fast-beam one-neutron pickup reactions to track single-particle strength in exotic nuclei, and also their expected sensitivity to neutron high-\ell (intruder) states which are often direct indicators of shell evolution and the disappearance of magic numbers in the exotic regime.Comment: 8 pages, 5 figure

    Holographic Gauge Theory with Maxwell Magnetic Field

    Full text link
    We first apply the transformation of mixing azimuthal with wrapped coordinate to the 11D M-theory with a stack N M5-branes to find the spacetime of a stack of N D4-branes with magnetic field in 10D IIA string theory, after the Kaluza-Klein reduction. In the near-horizon limit the background becomes the Melvin magnetic field deformed AdS6×S4AdS_6 \times S^4. Although the solution represents the D-branes under the Melvin RR one-form we use a simple observation to see that it also describes the solution of D-branes under the Maxwell magnetic field. As the magnetic field we consider is the part of the background itself we have presented an alternative to previous literature, because our method does not require the assumption of negligible back reaction. Next, we use the found solution to investigate the meson property through D4/D8 system (Sakai-Sugimoto model) and compare it with those studied by other authors. Finally, we present a detailed analysis about the Wilson loop therein and results show that the external Maxwell magnetic field will enhance the quark-antiquark potential.Comment: Latex 14 pp, add fi

    In-beam gamma-ray spectroscopy of 35Mg and 33Na

    Full text link
    Excited states in the very neutron-rich nuclei 35Mg and 33Na were populated in the fragmentation of a 38Si projectile beam on a Be target at 83 MeV/u beam energy. We report on the first observation of gamma-ray transitions in 35Mg, the odd-N neighbor of 34Mg and 36Mg, which are known to be part of the "Island of Inversion" around N = 20. The results are discussed in the framework of large- scale shell-model calculations. For the A = 3Z nucleus 33Na, a new gamma-ray transition was observed that is suggested to complete the gamma-ray cascade 7/2+ --> 5/2+ --> 3/2+ gs connecting three neutron 2p-2h intruder states that are predicted to form a close-to-ideal K = 3/2 rotational band in the strong-coupling limit.Comment: Accepted for publication Phys. Rev. C. March 16, 2011: Replaced figures 3 and 5. We thank Alfredo Poves for pointing out a problem with the two figure
    corecore