70 research outputs found

    Atmospheric deposition and precipitation are important predictors of inorganic nitrogen export to streams from forest and grassland watersheds: a large-scale data synthesis

    Get PDF
    Previous studies have evaluated how changes in atmospheric nitrogen (N) inputs and climate affect stream N concentrations and fluxes, but none have synthesized data from sites around the globe. We identified variables controlling stream inorganic N concentrations and fluxes, and how they have changed, by synthesizing 20 time series ranging from 5 to 51 years of data collected from forest and grassland dominated watersheds across Europe, North America, and East Asia and across four climate types (tropical, temperate, Mediterranean, and boreal) using the International Long-Term Ecological Research Network. We hypothesized that sites with greater atmospheric N deposition have greater stream N export rates, but that climate has taken a stronger role as atmospheric deposition declines in many regions of the globe. We found declining trends in bulk ammonium and nitrate deposition, especially in the longest time-series, with ammonium contributing relatively more to atmospheric N deposition over time. Among sites, there were statistically significant positive relationships between (1) annual rates of precipitation and stream ammonium and nitrate fluxes and (2) annual rates of atmospheric N inputs and stream nitrate concentrations and fluxes. There were no significant relationships between air temperature and stream N export. Our long-term data shows that although N deposition is declining over time, atmospheric N inputs and precipitation remain important predictors for inorganic N exported from forested and grassland watersheds. Overall, we also demonstrate that long-term monitoring provides understanding of ecosystems and biogeochemical cycling that would not be possible with short-term studies alone.publishedVersio

    Systematics, taxonomy and floristics of Brazilian Rubiaceae: an overview about the current status and future challenges

    Full text link

    Microbial immobilization and mineralization of dissolved organic nitrogen from forest floors.

    No full text
    Dissolved organic nitrogen (DON) plays a key role in the N cycle of many ecosystems, as DON availability and biodegradation are important for plant growth, microbial metabolism and N transport in soils. However, biodegradation of DON (defined as the sum of mineralization and microbial immobilization) is only poorly understood. In laboratory incubations, biodegradation of DON and dissolved organic carbon (DOC) from Oi and Oa horizons of spruce, beech and cypress forests ranged from 6 to 72%. Biodegradation of DON and DOC was similar in most samples, and mineralization of DON was more important than microbial immobilization. Nitrate additions (0-10 mg N L(-1)) never influenced either DON immobilization by microorganisms or mineralization. We conclude that soil microorganisms do not necessarily prefer mineral N over DON for meeting their N demand, and that biodegradation of DON seems to be driven by the microbial demand for C rather than N. Quantifying the dynamics of DON in soils should include consideration of both C and N demands by microbes

    A comparison of methods to determine the biodegradable dissolved organic carbon from different terrestrial sources.

    No full text
    The importance of dissolved organic matter (DOM) in many soil processes is determined in large part by its availability to microbial uptake and decomposition, as this biodegradation can yield both energy and limiting nutrients. Despite its importance in soil ecology, there are no standard approaches to measuring the biodegradable fraction of DOC (BDOC) in soils. Here, we evaluate the comparability and reproducibility of methods employed in six laboratories including batch, kinetic, and bioreactor methods. Solutions from a variety of sources (throughfall, soil solution and soil extracts) were analysed using methods typically employed in each of the six participating laboratories. Our results show that the precision of various BDOC methods was similar (5–15%) across a broad range of BDOC (from 12% to 56% of total DOC). Differences in mean BDOC for the various test solutions were statistically significant when results were pooled across all the methods, and only a 90-day incubation resulted in consistently higher values for BDOC than the other methods. For 4 of 6 test solutions, measured BDOC increased by 6–13% with added nutrients. Current methods produce largely comparable results, providing the justification for comparisons among existing data sets collected with different methodologies. We recommend two standard methods for future studies: (1) a rapid determination of relatively labile DOC (measurement of DOC removal after 7 days of incubation with added nutrients) and (2) a 42-day incubation with repeated analysis of CO2 production when determination of decomposition rate constants and a labile and relatively refractory component of DOC is desired

    Global abundance and size distribution of streams and rivers

    Get PDF
    To better integrate lotic ecosystems into global cycles and budgets, we provide approximations of the size-distribution and areal extent of streams and rivers. One approach we used was to employ stream network theory combined with data on stream width. We also used detailed stream networks on 2 continents to estimate the fraction of continental area occupied by streams worldwide and corrected remote sensing stream inventories for unresolved small streams. Our estimates of global fluvial area are 485 000 to 662 000 km2 and are +30–300% of published appraisals. Moderately sized rivers (orders 5–9) seem to comprise the greatest global area, with less area covered by low and high order streams, while global stream length, and therefore the riparian interface, is dominated by 1st order streams. Rivers and streams are likely to cover 0.30–0.56% of the land surface and make contributions to global processes and greenhouse gas emissions that may be +20–200% greater than those implied by previous estimates.

    Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget

    No full text
    Because freshwater covers such a small fraction of the Earth’s surface area, inland freshwater ecosystems (particularly lakes, rivers, and reservoirs) have rarely been considered as potentially important quantitative components of the carbon cycle at either global or regional scales. By taking published estimates of gas exchange, sediment accumulation, and carbon transport for a variety of aquatic systems, we have constructed a budget for the role of inland water ecosystems in the global carbon cycle. Our analysis conservatively estimates that inland waters annually receive, from a combination of background and anthropogenically altered sources, on the order of 1.9 Pg C y−1 from the terrestrial landscape, of which about 0.2 is buried in aquatic sediments, at least 0.8 (possibly much more) is returned to the atmosphere as gas exchange while the remaining 0.9 Pg y−1 is delivered to the oceans, roughly equally as inorganic and organic carbon. Thus, roughly twice as much C enters inland aquatic systems from land as is exported from land to the sea. Over prolonged time net carbon fluxes in aquatic systems tend to be greater per unit area than in much of the surrounding land. Although their area is small, these freshwater aquatic systems can affect regional C balances. Further, the inclusion of inland, freshwater ecosystems provides useful insight about the storage, oxidation and transport of terrestrial C, and may warrant a revision of how the modern net C sink on land is described.

    The global abundance and size distribution of lakes, ponds, and impoundments

    No full text
    One of the major impediments to the integration of lentic ecosystems into global environmental analyses has been fragmentary data on the extent and size distribution of lakes, ponds, and impoundments. We use new data sources, enhanced spatial resolution, and new analytical approaches to provide new estimates of the global abundance of surface-water bodies. A global model based on the Pareto distribution shows that the global extent of natural lakes is twice as large as previously known (304 million lakes; 4.2 million km2 in area) and is dominated in area by millions of water bodies smaller than 1 km2. Similar analyses of impoundments based on inventories of large, engineered dams show that impounded waters cover approximately 0.26 million km2. However, construction of low-tech farm impoundments is estimated to be between 0.1% and 6% of farm area worldwide, dependent upon precipitation, and represents >77,000 km2 globally, at present. Overall, about 4.6 million km2 of the earth’s continental ‘‘land’’ surface (>3%) is covered by water. These analyses underscore the importance of explicitly considering lakes, ponds, and impoundments, especially small ones, in global analyses of rates and processes
    • …
    corecore