976 research outputs found

    Lower Prevalence of Antibiotic-Resistant Enterococci on U.S. Conventional Poultry Farms that Transitioned to Organic Practices

    Get PDF
    Background: In U.S. conventional poultry production, antimicrobials are used for therapeutic, prophylactic, and nontherapeutic purposes. Researchers have shown that this can select for antibiotic-resistant commensal and pathogenic bacteria on poultry farms and in poultry-derived products. However, no U.S. studies have investigated on-farm changes in resistance as conventional poultry farms transition to organic practices and cease using antibiotics

    Patients with TNF Receptor Associated Periodic Syndrome (TRAPS) are hypersensitive to Toll‐like receptor 9 stimulation

    Get PDF
    Tumour necrosis factor receptor‐associated periodic syndrome (TRAPS) is an hereditary autoinflammatory disorder characterised by recurrent episodes of fever and inflammation. It is associated with autosomal dominant mutations in TNFRSF1A, which encodes tumour necrosis factor receptor‐1 (TNFR1). Our aim was to understand the influence of TRAPS mutations on the response to stimulation of the pattern recognition receptor TLR9. Peripheral blood mononuclear cells (PBMCs) and serum were isolated from TRAPS patients and healthy controls: Serum levels of fifteen pro‐inflammatory cytokines were measured to assess the initial inflammatory status. IL‐1ÎČ, IL‐6, IL‐8, IL17, IL22, TNF‐α, VEGF, IFN‐γ, MCP‐1 and TGF‐ÎČ were significantly elevated in TRAPS patients sera, consistent with constitutive inflammation. Stimulation of PBMCs with TLR9 ligand (ODN2006) triggered significantly greater upregulation of pro‐inflammatory signalling intermediates (TRAF3, IRAK2, TOLLIP, TRAF6, pTAK, TAB2, pTAB2, IRF7, RIP, NF‐kB p65, pNF‐ÎșB p65, and MEK1/2) in TRAPS patients’ PBMCs. This upregulation of proinflammatory signalling intermediates and raised serum cytokines occurred despite concurrent anakinra treatment and no overt clinical symptoms at time of sampling. These novel findings further demonstrate the wide‐ranging nature of the dysregulation of innate immune responses underlying the pathology of TRAPS and highlights the need for novel pathway‐specific therapeutic treatments for this disease

    Recurrent mutation of IGF signalling genes and distinct patterns of genomic rearrangement in osteosarcoma

    Get PDF
    Osteosarcoma is a primary malignancy of bone that affects children and adults. Here, we present the largest sequencing study of osteosarcoma to date, comprising 112 childhood and adult tumours encompassing all major histological subtypes. A key finding of our study is the identification of mutations in insulin-like growth factor (IGF) signalling genes in 8/112 (7%) of cases. We validate this observation using fluorescence in situ hybridization (FISH) in an additional 87 osteosarcomas, with IGF1 receptor (IGF1R) amplification observed in 14% of tumours. These findings may inform patient selection in future trials of IGF1R inhibitors in osteosarcoma. Analysing patterns of mutation, we identify distinct rearrangement profiles including a process characterized by chromothripsis and amplification. This process operates recurrently at discrete genomic regions and generates driver mutations. It may represent an age-independent mutational mechanism that contributes to the development of osteosarcoma in children and adults alike

    In search of innovative capabilities of communities of practice : a systematic review and typology for future research

    Get PDF
    The concept of communities of practice has generated considerable debate among scholars of management. Attention has shifted from a concern with the transmission and reproduction of knowledge towards their utility for enhancing innovative potential. Questions of governance, power, collaboration and control have all entered the debate with different theorizations emerging from a wide mix of empirical research. We appraise these key findings through a critical review of the literature. From a divergent range of findings, we identify four main ways in which communities of practice enable and constrain innovative capabilities as (a) enablers of learning for innovation, (b) situated platforms for professional occupations, (c) dispersed collaborative environments and (d) governance structures designed for purpose. Our conclusion signals the way forward for further research that could be used to improve our understanding of different contextual forms and how they may align with organizations in enabling rather than constraining innovative capabilities

    Multiple antimicrobial resistance in plague: An emerging public health risk

    Get PDF
    Antimicrobial resistance in Yersinia pestis is rare, yet constitutes a significant international public health and biodefense threat. In 1995, the first multidrug resistant (MDR) isolate of Y. pestis (strain IP275) was identified, and was shown to contain a self-transmissible plasmid (pIP1202) that conferred resistance to many of the antimicrobials recommended for plague treatment and prophylaxis. Comparative analysis of the DNA sequence of Y. pestis plasmid pIP1202 revealed a near identical IncA/C plasmid backbone that is shared by MDR plasmids isolated from Salmonella enterica serotype Newport SL254 and the fish pathogen Yersinia ruckeri YR71. The high degree of sequence identity and gene synteny between the plasmid backbones suggests recent acquisition of these plasmids from a common ancestor. In addition, the Y. pestis pIP1202-like plasmid backbone was detected in numerous MDR enterobacterial pathogens isolated from retail meat samples collected between 2002 and 2005 in the United States. Plasmid-positive strains were isolated from beef, chicken, turkey and pork, and were found in samples from the following states: California, Colorado, Connecticut, Georgia, Maryland, Minnesota, New Mexico, New York and Oregon. Our studies reveal that this common plasmid backbone is broadly disseminated among MDR zoonotic pathogens associated with agriculture. This reservoir of mobile resistance determinants has the potential to disseminate to Y. pestis and other human and zoonotic bacterial pathogens and therefore represents a significant public health concern

    A new view of electrochemistry at highly oriented pyrolytic graphite

    Get PDF
    Major new insights on electrochemical processes at graphite electrodes are reported, following extensive investigations of two of the most studied redox couples, Fe(CN)64–/3– and Ru(NH3)63+/2+. Experiments have been carried out on five different grades of highly oriented pyrolytic graphite (HOPG) that vary in step-edge height and surface coverage. Significantly, the same electrochemical characteristic is observed on all surfaces, independent of surface quality: initial cyclic voltammetry (CV) is close to reversible on freshly cleaved surfaces (>400 measurements for Fe(CN)64–/3– and >100 for Ru(NH3)63+/2+), in marked contrast to previous studies that have found very slow electron transfer (ET) kinetics, with an interpretation that ET only occurs at step edges. Significantly, high spatial resolution electrochemical imaging with scanning electrochemical cell microscopy, on the highest quality mechanically cleaved HOPG, demonstrates definitively that the pristine basal surface supports fast ET, and that ET is not confined to step edges. However, the history of the HOPG surface strongly influences the electrochemical behavior. Thus, Fe(CN)64–/3– shows markedly diminished ET kinetics with either extended exposure of the HOPG surface to the ambient environment or repeated CV measurements. In situ atomic force microscopy (AFM) reveals that the deterioration in apparent ET kinetics is coupled with the deposition of material on the HOPG electrode, while conducting-AFM highlights that, after cleaving, the local surface conductivity of HOPG deteriorates significantly with time. These observations and new insights are not only important for graphite, but have significant implications for electrochemistry at related carbon materials such as graphene and carbon nanotubes

    Reconstituted B cell receptor signaling reveals carbohydrate-dependent mode of activation

    Get PDF
    Activation of immune cells (but not B cells) with lectins is widely known. We used the structurally defined interaction between influenza hemagglutinin (HA) and its cell surface receptor sialic acid (SA) to identify a B cell receptor (BCR) activation modality that proceeded through non-cognate interactions with antigen. Using a new approach to reconstitute antigen-receptor interactions in a human reporter B cell line, we found that sequence-defined BCRs from the human germline repertoire could be triggered by both complementarity to influenza HA and a separate mode of signaling that relied on multivalent ligation of BCR sialyl-oligosaccharide. The latter suggested a new mechanism for priming naĂŻve B cell responses and manifested as the induction of SA-dependent pan-activation by peripheral blood B cells. BCR crosslinking in the absence of complementarity is a superantigen effect induced by some microbial products to subvert production of antigen-specific immune responses. B cell superantigen activity through affinity for BCR carbohydrate is discussed
    • 

    corecore