572 research outputs found
Evaluation of the synoptic and mesoscale predictive capabilities of a mesoscale atmospheric simulation system
The overall performance characteristics of a limited area, hydrostatic, fine (52 km) mesh, primitive equation, numerical weather prediction model are determined in anticipation of satellite data assimilations with the model. The synoptic and mesoscale predictive capabilities of version 2.0 of this model, the Mesoscale Atmospheric Simulation System (MASS 2.0), were evaluated. The two part study is based on a sample of approximately thirty 12h and 24h forecasts of atmospheric flow patterns during spring and early summer. The synoptic scale evaluation results benchmark the performance of MASS 2.0 against that of an operational, synoptic scale weather prediction model, the Limited area Fine Mesh (LFM). The large sample allows for the calculation of statistically significant measures of forecast accuracy and the determination of systematic model errors. The synoptic scale benchmark is required before unsmoothed mesoscale forecast fields can be seriously considered
Decay of Superflow Confined in Thin Torus: A Realization of Tunneling Quantum Fields
The quantum nucleation of phase slips in neutral superfluids confined in a
thin torus is investigated by means of the collective coordinate method. We
have devised, with numerical justification, a certain collective coordinate to
describe the quantum nucleation process of a phase slip. Considering the
quantum fluctuation around the local minimum of the action, we calculate the
effective mass of the phase slip. Due to the coherence of the condensate
throughout the torus, the effective mass is proportional to the circumference L
of the torus, and the decay rate has a strong exponential L-dependence.Comment: 4 pages, 2 figures, REVTe
Critical currents in Josephson junctions with macroscopic defects
The critical currents in Josephson junctions of conventional superconductors
with macroscopic defects are calculated for different defect critical current
densities as a function of the magnetic field. We also study the evolution of
the different modes with the defect position, at zero external field. We study
the stability of the solutions and derive simple arguments, that could help the
defect characterization. In most cases a reentrant behavior is seen, where both
a maximum and a minimum current exist.Comment: 17 pages with 16 figures, submitted to Supercond. Sci. Techno
Multi-photon transitions between energy levels in a current-biased Josephson tunnel junction
The escape of a small current-biased Josephson tunnel junction from the zero
voltage state in the presence of weak microwave radiation is investigated
experimentally at low temperatures. The measurements of the junction switching
current distribution indicate the macroscopic quantum tunneling of the phase
below a cross-over temperature of . At
temperatures below we observe both single-photon and
\emph{multi-photon} transitions between the junction energy levels by applying
microwave radiation in the frequency range between and to the junction. These observations reflect the anharmonicity of the
junction potential containing only a small number of levels.Comment: 4 pages, 5 figure
Mode-Locking in Quantum-Hall-Effect Point Contacts
We study the effect of an ac drive on the current-voltage (I-V)
characteristics of a tunnel junction between two fractional Quantum Hall fluids
at filling an odd integer. Within the chiral Luttinger liquid model
of edge states, the point contact dynamics is described by a driven damped
quantum mechanical pendulum. In a semi-classical limit which ignores electron
tunnelling, this model exhibits mode-locking, which corresponds to current
plateaus in the I-V curve at integer multiples of , with
the ac drive angular frequency. By analyzing the full quantum model at
non-zero using perturbative and exact methods, we study the effect of
quantum fluctuation on the mode-locked plateaus. For quantum
fluctuations smear completely the plateaus, leaving no trace of the ac drive.
For smeared plateaus remain in the I-V curve, but are not
centered at the currents . For rounded plateaus
centered around the quantized current values are found. The possibility of
using mode locking in FQHE point contacts as a current-to-frequency standard is
discussed.Comment: 12 pages, 8 figures, minor change
Microscopic self-consistent theory of Josephson junctions including dynamical electron correlations
We formulate a fully self-consistent, microscopic model to study the
retardation and correlation effects of the barrier within a Josephson junction.
The junction is described by a series of planes, with electronic correlation
included through a local self energy for each plane. We calculate current-phase
relationships for various junctions, which include non-magnetic impurities in
the barrier region, or an interfacial scattering potential. Our results
indicate that the linear response of the supercurrent to phase across the
barrier region is a good, but not exact indicator of the critical current. Our
calculations of the local density of states show the current-carrying Andreev
bound states and their energy evolution with the phase difference across the
junction.
We calculate the figure of merit for a Josephson junction, which is the
product of the critical current, Ic, and the normal state resistance, R(N), for
junctions with different barrier materials. The normal state resistance is
calculated using the Kubo formula, for a system with zero current flow and no
superconducting order. Semiclassical calculations would predict that these two
quantities are determined by the transmission probabilities of electrons in
such a way that the product is constant for a given superconductor at fixed
temperature. Our self-consistent solutions for different types of barrier
indicate that this is not the case. We suggest some forms of barrier which
could increase the Ic.R(N) product, and hence improve the frequency response of
a Josephson device.Comment: 46 pages, 21 figure
Voltage rectification by a SQUID ratchet
We argue that the phase across an asymmetric dc SQUID threaded by a magnetic
flux can experience an effective ratchet (periodic and asymmetric) potential.
Under an external ac current, a rocking ratchet mechanism operates whereby one
sign of the time derivative of the phase is favored. We show that there exists
a range of parameters in which a fixed sign (and, in a narrower range, even a
fixed value) of the average voltage across the ring occurs, regardless of the
sign of the external current dc component.Comment: 4 pages, 4 EPS figures, uses psfig.sty. Revised version, to appear in
Physical Review Letters (26 August 1996
Single-vortex-induced voltage steps in Josephson-junction arrays
We have numerically and analytically studied ac+dc driven Josephson-junction
arrays with a single vortex or with a single vortex-antivortex pair present. We
find single-vortex steps in the voltage versus current characteristics (I-V) of
the array. They correspond microscopically to a single vortex phase-locked to
move a fixed number of plaquettes per period of the ac driving current. In
underdamped arrays we find vortex motion period doubling on the steps. We
observe subharmonic steps in both underdamped and overdamped arrays. We
successfully compare these results with a phenomenological model of vortex
motion with a nonlinear viscosity. The I-V of an array with a vortex-antivortex
pair displays fractional voltage steps. A possible connection of these results
to present day experiments is also discussed.Comment: 10 pages double sided with figures included in the text. To appear in
Journal of Physics, Condensed Matte
Charge Solitons in 1-D Arrays of Serially Coupled Josephson Junctions
We study a 1-D array of Josephson coupled superconducting grains with kinetic
inductance which dominates over the Josephson inductance. In this limit the
dynamics of excess Cooper pairs in the array is described in terms of charge
solitons, created by polarization of the grains. We analyze the dynamics of
these topological excitations, which are dual to the fluxons in a long
Josephson junction, using the continuum sine-Gordon model. We find that their
classical relativistic motion leads to saturation branches in the I-V
characteristic of the array. We then discuss the semi-classical quantization of
the charge soliton, and show that it is consistent with the large kinetic
inductance of the array. We study the dynamics of a quantum charge soliton in a
ring-shaped array biased by an external flux through its center. If the
dephasing length of the quantum charge soliton is larger than the circumference
of the array, quantum phenomena like persistent current and coherent current
oscillations are expected. As the characteristic width of the charge soliton is
of the order of 100 microns, it is a macroscopic quantum object. We discuss the
dephasing mechanisms which can suppress the quantum behaviour of the charge
soliton.Comment: 26 pages, LaTex, 7 Postscript figure
THEORY OF PHASE-LOCKING IN SMALL JOSEPHSON JUNCTION CELLS
Within the RSJ model, we performed a theoretical analysis of phase-locking in
elementary strongly coupled Josephson junction cells. For this purpose, we
developed a systematic method allowing the investigation of phase-locking in
cells with small but non-vanishing loop inductance.The voltages across the
junctions are found to be locked with very small phase difference for almost
all values of external flux. However, the general behavior of phase-locking is
found to be just contrary to that according to weak coupling. In case of strong
coupling there is nearly no influence of external magnetic flux on the phases,
but the locking-frequency becomes flux-dependent. The influence of parameter
splitting is considered as well as the effect of small capacitive shunting of
the junctions. Strongly coupled cells show synchronization even for large
parameter splitting. Finally, a study of the behavior under external microwave
radiation shows that the frequency locking-range becomes strongly
flux-dependent, whereas the locking frequency itself turns out to be
flux-independent.Comment: 26 pages, REVTEX, 9 PS figures appended in uuencoded form at the end,
submitted to Phys. Rev. B
- …