4,677 research outputs found

    Biorthonormal Matrix-Product-State Analysis for Non-Hermitian Transfer-Matrix Renormalization-Group in the Thermodynamic Limit

    Full text link
    We give a thorough Biorthonormal Matrix-Product-State (BMPS) analysis of the Transfer-Matrix Renormalization-Group (TMRG) for non-Hermitian matrices in the thermodynamic limit. The BMPS is built on a dual series of reduced biorthonormal bases for the left and right Perron states of a non-Hermitian matrix. We propose two alternative infinite-size Biorthonormal TMRG (iBTMRG) algorithms and compare their numerical performance in both finite and infinite systems. We show that both iBTMRGs produce a dual infinite-BMPS (iBMPS) which are translationally invariant in the thermodynamic limit. We also develop an efficient wave function transformation of the iBTMRG, an analogy of McCulloch in the infinite-DMRG [arXiv:0804.2509 (2008)], to predict the wave function as the lattice size is increased. The resulting iBMPS allows for probing bulk properties of the system in the thermodynamic limit without boundary effects and allows for reducing the computational cost to be independent of the lattice size, which are illustrated by calculating the magnetization as a function of the temperature and the critical spin-spin correlation in the thermodynamic limit for a 2D classical Ising model.Comment: 14 pages, 9 figure

    Minimally Entangled Typical Thermal State Algorithms

    Full text link
    We discuss a method based on sampling minimally entangled typical thermal states (METTS) that can simulate finite temperature quantum systems with a computational cost comparable to ground state DMRG. Detailed implementations of each step of the method are presented, along with efficient algorithms for working with matrix product states and matrix product operators. We furthermore explore how properties of METTS can reveal characteristic order and excitations of systems and discuss why METTS form an efficient basis for sampling. Finally, we explore the extent to which the average entanglement of a METTS ensemble is minimal.Comment: 18 pages, 14 figure

    Development and application of operational techniques for the inventory and monitoring of resources and uses for the Texas coastal zone. Volume 1: Text

    Get PDF
    The author has identified the following significant results. Image interpretation and computer-assisted techniques were developed to analyze LANDSAT scenes in support of resource inventory and monitoring requirements for the Texas coastal region. Land cover and land use maps, at a scale of 1:125,000 for the image interpretation product and 1:24,000 for the computer-assisted product, were generated covering four Texas coastal test sites. Classification schemes which parallel national systems were developed for each procedure, including 23 classes for image interpretation technique and 13 classes for the computer-assisted technique. Results indicate that LANDSAT-derived land cover and land use maps can be successfully applied to a variety of planning and management activities on the Texas coast. Computer-derived land/water maps can be used with tide gage data to assess shoreline boundaries for management purposes

    Eastern Asian emissions of anthropogenic halocarbons deduced from aircraft concentration data

    Get PDF
    The Montreal Protocol restricts production of ozone-depleting halocarbons worldwide. Enforcement of the protocol has relied mainly on annual government statistics of production and consumption of these compounds (bottom-up approach). We show here that aircraft observations of halocarbon:CO enhancement ratios on regional to continental scales can be used to infer halocarbon emissions, providing independent verification of the bottom-up approach. We apply this top-down approach to aircraft observations of Asian outflow from the TRACE-P mission over the western Pacific (March April 2001) and derive emissions from eastern Asia (China, Japan, and Korea). We derive an eastern Asian carbon tetrachloride (CCl ) source of 21.5 Gg yr , several-fold larger than previous estimates and amounting to 30% of the global budget for this gas. Our emission estimate for CFC-11 from eastern Asia is 50% higher than inventories derived from manufacturing records. Our emission estimates for methyl chloroform (CH ) and CFC-12 are in agreement with existing inventories. For halon 1211 we find only a strong local source originating from the Shanghai area. Our emission estimates for the above gases result in a 40% increase in the ozone depletion potential (ODP) of Asian emissions relative to previous estimates, corresponding to a 10% global increase in ODP

    From density-matrix renormalization group to matrix product states

    Full text link
    In this paper we give an introduction to the numerical density matrix renormalization group (DMRG) algorithm, from the perspective of the more general matrix product state (MPS) formulation. We cover in detail the differences between the original DMRG formulation and the MPS approach, demonstrating the additional flexibility that arises from constructing both the wavefunction and the Hamiltonian in MPS form. We also show how to make use of global symmetries, for both the Abelian and non-Abelian cases.Comment: Numerous small changes and clarifications, added a figur

    Matrix product decomposition and classical simulation of quantum dynamics in the presence of a symmetry

    Full text link
    We propose a refined matrix product state representation for many-body quantum states that are invariant under SU(2) transformations, and indicate how to extend the time-evolving block decimation (TEBD) algorithm in order to simulate time evolution in an SU(2) invariant system. The resulting algorithm is tested in a critical quantum spin chain and shown to be significantly more efficient than the standard TEBD.Comment: 5 pages, 4 figure
    • …
    corecore