749 research outputs found

    Some Effects of Stator Cone Angle and Blade-tip Leakage on 40 Percent Reaction Turbine Having Rotor-blade Caps

    Get PDF
    An investigation of the effects of stator cone angle and tip leakage on turbine performance

    Obesity Promotes Cooperation of Cancer Stem-Like Cells and Macrophages to Enhance Mammary Tumor Angiogenesis

    Get PDF
    Obesity is correlated with worsened prognosis and treatment resistance in breast cancer. Macrophage-targeted therapies are currently in clinical trials, however, little is known about how obesity may impact treatment efficacy. Within breast adipose tissue, obesity leads to chronic, macrophage-driven inflammation, suggesting that obese breast cancer patients may benefit from these therapies. Using a high fat diet model of obesity, we orthotopically transplanted cancer cell lines into the mammary glands of obese and lean mice. We quantified changes in tumor invasiveness, angiogenesis and metastasis, and examined the efficacy of macrophage depletion to diminish tumor progression in obese and lean mice. Mammary tumors from obese mice grew significantly faster, were enriched for cancer stem-like cells (CSCs) and were more locally invasive and metastatic. Tumor cells isolated from obese mice demonstrated enhanced expression of stem cell-related pathways including Sox2 and Notch2. Despite more rapid growth, mammary tumors from obese mice had reduced necrosis, higher blood vessel density, and greater macrophage recruitment. Depletion of macrophages in obese tumor-bearing mice resulted in increased tumor necrosis, reduced endothelial cells, and enhanced recruitment of CD8+ T cells compared to IgG-treated controls. Macrophages may be an important clinical target to improve treatment options for obese breast cancer patients

    Face Detection on Embedded Systems

    Get PDF
    Over recent years automated face detection and recognition (FDR) have gained significant attention from the commercial and research sectors. This paper presents an embedded face detection solution aimed at addressing the real-time image processing requirements within a wide range of applications. As face detection is a computationally intensive task, an embedded solution would give rise to opportunities for discrete economical devices that could be applied and integrated into a vast majority of applications. This work focuses on the use of FPGAs as the embedded prototyping technology where the thread of execution is carried out on an embedded soft-core processor. Custom instructions have been utilized as a means of applying software/hardware partitioning through which the computational bottlenecks are moved to hardware. A speedup by a factor of 110 was achieved from employing custom instructions and software optimizations

    Inter-laboratory proficiency testing scheme for tumour next-generation sequencing in Ontario: A pilot study

    Get PDF
    Background A pilot inter-laboratory proficiency scheme for 5 Ontario clinical laboratories testing tumour samples for the Ontario-wide Cancer Targeted Nucleic Acid Evaluation (OCTANE) study was undertaken to assess proficiency in the identification and reporting of next-generation sequencing (NGS) test results in solid tumour testing from archival formalin-fixed, paraffin-embedded (FFPE) tissue. Methods One laboratory served as the reference centre and provided samples to 4 participating laboratories. An analyte-based approach was applied: each participating laboratory received 10 FFPE tissue specimens profiled at the reference centre, with tumour site and histology provided. Laboratories performed testing per their standard NGS tumour test protocols. Items returned for assessment included genes and variants that would be typically reported in routine clinical testing and variant call format (VCF) files to allow for assessment of NGS technical quality. Results Two main aspects were assessed: Technical quality and accuracy of identification of exonic variants Site-specific reporting practices Technical assessment included evaluation of exonic variant identification, quality assessment of the VCF files to evaluate base calling, variant allele frequency, and depth of coverage for all exonic variants. Concordance at 100% was observed from all sites in the technical identification of 98 exonic variants across the 10 cases. Variability between laboratories in the choice of variants considered clinically reportable was significant. Of the 38 variants reported as clinically relevant by at least 1 site, only 3 variants were concordantly reported by all participating centres as clinically relevant. Conclusions Although excellent technical concordance for NGS tumour profiling was observed across participating institutions, differences in the reporting of clinically relevant variants were observed, highlighting reporting as a gap where consensus on the part of Ontario laboratories is needed

    Probing Cation Antisite Disorder in Gd2Ti2O7 Pyrochlore by Site-specific NEXAFS and XPS

    Full text link
    Disorder in Gd2Ti2O7 is investigated by near-edge x-ray-absorption fine structure (NEXAFS) and x-ray photoelectron spectroscopy (XPS). NEXAFS shows Ti4+ ions occupy octahedral sites with a tetragonal distortion induced by vacant oxygen sites. O 1s XPS spectra obtained with a charge neutralization system from Gd2Ti2O7(100) and the Gd2Ti2O7 pyrochlore used by Chen et al. [Phys. Rev. Lett. 88, 105901 (2002)], both yielded a single peak, unlike the previous result on the latter that found two peaks. The current results give no evidence for an anisotropic distribution of Ti and O. The extra features reported in the aforementioned communication resulted from charging effects and incomplete surface cleaning. Thus, a result confirming the direct observation of simultaneous cation-anion antisite disordering and lending credence to the split vacancy model has been clarified
    corecore