895 research outputs found

    A cosmological model in Weyl-Cartan spacetime

    Get PDF
    We present a cosmological model for early stages of the universe on the basis of a Weyl-Cartan spacetime. In this model, torsion TαT^{\alpha} and nonmetricity QαβQ_{\alpha \beta} are proportional to the vacuum polarization. Extending earlier work of one of us (RT), we discuss the behavior of the cosmic scale factor and the Weyl 1-form in detail. We show how our model fits into the more general framework of metric-affine gravity (MAG).Comment: 19 pages, 5 figures, typos corrected, uses IOP style fil

    A Snapshot of J. L. Synge

    Full text link
    A brief description is given of the life and influence on relativity theory of Professor J. L. Synge accompanied by some technical examples to illustrate his style of work

    Exact solution for random walks on the triangular lattice with absorbing boundaries

    Full text link
    The problem of a random walk on a finite triangular lattice with a single interior source point and zig-zag absorbing boundaries is solved exactly. This problem has been previously considered intractable.Comment: 10 pages, Latex, IOP macro

    Another Non-segregated Blue Straggler Population in a Globular Cluster: the Case of NGC 2419

    Full text link
    We have used a combination of ACS-HST high-resolution and wide-field SUBARU data in order to study the Blue Straggler Star (BSS) population over the entire extension of the remote Galactic globular cluster NGC 2419. The BSS population presented here is among the largest ever observed in any stellar system, with more than 230 BSS in the brightest portion of the sequence. The radial distribution of the selected BSS is essentially the same as that of the other cluster stars. In this sense the BSS radial distribution is similar to that of omega Centauri and unlike that of all Galactic globular clusters studied to date, which have highly centrally segregated distributions and, in most cases, a pronounced upturn in the external regions. As in the case of omega Centauri, this evidence indicates that NGC 2419 is not yet relaxed even in the central regions. This observational fact is in agreement with estimated half-mass relaxation time, which is of the order of the cluster age.Comment: in press in the Ap

    The surprising external upturn of the Blue Straggler radial distribution in M55

    Full text link
    By combining high-resolution HST and wide-field ground based observations, in ultraviolet and optical bands, we study the Blue Straggler Star (BSS) population of the low density galactic globular cluster M55 (NGC 6809) over its entire radial extent. The BSS projected radial distribution is found to be bimodal, with a central peak, a broad minimum at intermediate radii, and an upturn at large radii. Similar bimodal distributions have been found in other globular clusters (M3, 47 Tucanae, NGC 6752, M5), but the external upturn in M55 is the largest found to date. This might indicate a large fraction of primordial binaries in the outer regions of M55, which seems somehow in contrast with the relatively low (\sim 10%) binary fraction recently measured in the core of this cluster.Comment: in press on Ap

    From Newton's Laws to the Wheeler-DeWitt Equation

    Get PDF
    This is a pedagogical paper which explains some ideas in cosmology at a level accessible to undergraduate students. It does not use general relativity, but uses the ideas of Newtonian cosmology worked out by Milne and McCrea. The cosmological constant is also introduced within a Newtonian framework. Following standard quantization procedures the Wheeler-DeWitt equation in the minisuperspace approximation is derived for empty and non-empty universes.Comment: 13 pages, 1 figur

    Cosmological Inhomogeneities with Bose-Einstein Condensate Dark Matter

    Full text link
    We consider the growth of cosmological perturbations to the energy density of dark matter during matter domination when dark matter is a scalar field that has undergone Bose-Einstein condensation. We study these inhomogeneities within the framework of both Newtonian gravity, where the calculation and results are more transparent, and General Relativity. The direction we take is to derive analytical expressions, which can be obtained in the small pressure limit. Throughout we compare our results to those of the standard cosmology, where dark matter is assumed pressureless, using our analytical expressions to showcase precise differences. We find, compared to the standard cosmology, that Bose-Einstein condensate dark matter leads to a scale factor, gravitational potential and density contrast that increase at faster rates.Comment: 17 pages, 2 figures; typos corrected, references adde

    Third order perturbations of a zero-pressure cosmological medium: Pure general relativistic nonlinear effects

    Full text link
    We consider a general relativistic zero-pressure irrotational cosmological medium perturbed to the third order. We assume a flat Friedmann background but include the cosmological constant. We ignore the rotational perturbation which decays in expanding phase. In our previous studies we discovered that, to the second-order perturbation, except for the gravitational wave contributions, the relativistic equations coincide exactly with the previously known Newtonian ones. Since the Newtonian second-order equations are fully nonlinear, any nonvanishing third and higher order terms in the relativistic analyses are supposed to be pure relativistic corrections. In this work we derive such correction terms appearing in the third order. Continuing our success in the second-order perturbations we take the comoving gauge. We discover that the third-order correction terms are of ϕv\phi_v-order higher than the second-order terms where ϕv\phi_v is a gauge-invariant combination related to the three-space curvature perturbation in the comoving gauge; compared with the Newtonian potential we have δΦ35ϕv\delta \Phi \sim {3 \over 5} \phi_v to the linear order. Therefore, the pure general relativistic effects are of varphivvarphi_v-order higher than the Newtonian ones. The corrections terms are independent of the horizon scale and depend only on the linear order gravitational potential perturbation strength. From the temperature anisotropy of cosmic microwave background we have δTT13δΦ15ϕv105{\delta T \over T} \sim {1 \over 3} \delta \Phi \sim {1 \over 5} \phi_v \sim 10^{-5}. Therefore, our present result reinforces our previous important practical implication that near current era one can use the large-scale Newtonian numerical simulation more reliably even as the simulation scale approaches near the horizon.Comment: 9 pages, no figur

    Pressure as a Source of Gravity

    Full text link
    The active mass density in Einstein's theory of gravitation in the analog of Poisson's equation in a local inertial system is proportional to ρ+3p/c2\rho+3p/c^2. Here ρ\rho is the density of energy and pp its pressure for a perfect fluid. By using exact solutions of Einstein's field equations in the static case we study whether the pressure term contributes towards the mass

    The Unimodal Distribution Of Blue Straggler Stars in M75 (NGC 6864)

    Full text link
    We have used a combination of multiband high-resolution and wide-field ground-based observations to image the Galactic globular cluster M75 (NGC 6864). The extensive photometric sample covers the entire cluster extension, from the very central regions out to the tidal radius, allowing us to determine the center of gravity and to construct the most extended star density profile ever published for this cluster. We also present the first detailed star counts in the very inner regions. The star density profile is well re-produced by a standard King model with core radius r_c ~ 5.4" and intermediate-high concentration c ~ 1.75. The present paper presents a detailed study of the BSS population and its radial distribution. A total number of 62 bright BSSs (with m_F255W < 21, corresponding to m_F555W < 20) has been identified, and they have been found to be highly segregated in the cluster core. No significant upturn in the BSS frequency has been observed in the outskirts of M75, in contrast to several other clusters studied with the same technique. This observational fact is quite similar to what has been found in M79 (NGC 1904) by Lanzoni et al. (2007a). Indeed the BSS radial distributions in the two clusters is qualitatively very similar, even if in M75 the relative BSS frequency seems to decrease significantly faster than in M79: indeed it decreases by a factor of 5 (from 3.4 to 0.7) within 1 r_c. Such evidence indicate that the vast majority of the cluster heavy stars (binaries) have already sunk to the core.Comment: ApJ accepted, 10 pages, 11 figures, 2 table
    corecore