5,498 research outputs found

    An extreme ultraviolet spectrometer experiment for the Shuttle Get Away Special Program

    Get PDF
    An extreme ultraviolet (EUV) spectrometer experiment operated successfully during the STS-7 mission in an experiment to measure the global and diurnal variation of the EUV airglow. The spectrometer is an F 3.5 Wadsworth mount with mechanical collimator, a 75 x 75 mm grating, and a bare microchannel plate detector providing a spectral resolution of 7 X FWHM. Read-out of the signal is through discrete channels or resistive anode techniques. The experiment includes a microcomputer, 20 Mbit tape recorder, and a 28V, 40 Ahr silver-zinc battery. It is the first GAS payload to use an opening door. The spectrometer's 0.1 x 4.2 deg field of view is pointed vertically out of the shuttle bay. During the STS-7 flight data were acquired continuously for a period of 5 hours and 37 minutes, providing spectra of the 570 A to 850 A wavelength region of the airglow. Five diurnal cycles of the 584 A emission of neutral helium and the 834 A emission of ionized atomic oxygen were recorded. The experiment also recorded ion events and pressure pulses associated with thruster firings. The experiment is to fly again on Mission 41-F

    Exact solution of a 2d random Ising model

    Full text link
    The model considered is a d=2 layered random Ising system on a square lattice with nearest neighbours interaction. It is assumed that all the vertical couplings are equal and take the positive value J while the horizontal couplings are quenched random variables which are equal in the same row but can take the two possible values J and J-K in different rows. The exact solution is obtained in the limit case of infinite K for any distribution of the horizontal couplings. The model which corresponds to this limit can be seen as an ordinary Ising system where the spins of some rows, chosen at random, are frozen in an antiferromagnetic order. No phase transition is found if the horizontal couplings are independent random variables while for correlated disorder one finds a low temperature phase with some glassy properties.Comment: 10 pages, Plain TeX, 3 ps figures, submitted to Europhys. Let

    Spin Chains as Perfect Quantum State Mirrors

    Full text link
    Quantum information transfer is an important part of quantum information processing. Several proposals for quantum information transfer along linear arrays of nearest-neighbor coupled qubits or spins were made recently. Perfect transfer was shown to exist in two models with specifically designed strongly inhomogeneous couplings. We show that perfect transfer occurs in an entire class of chains, including systems whose nearest-neighbor couplings vary only weakly along the chain. The key to these observations is the Jordan-Wigner mapping of spins to noninteracting lattice fermions which display perfectly periodic dynamics if the single-particle energy spectrum is appropriate. After a half-period of that dynamics any state is transformed into its mirror image with respect to the center of the chain. The absence of fermion interactions preserves these features at arbitrary temperature and allows for the transfer of nontrivially entangled states of several spins or qubits.Comment: Abstract extended, introduction shortened, some clarifications in the text, one new reference. Accepted by Phys. Rev. A (Rapid Communications

    Form factor expansion of the row and diagonal correlation functions of the two dimensional Ising model

    Full text link
    We derive and prove exponential and form factor expansions of the row correlation function and the diagonal correlation function of the two dimensional Ising model

    Paper Session III-B - Space Exploration Initiative Logistics Support - Lessons from the DoD

    Get PDF
    A mission as complex as the Space Exploration Initiative (SEI) cannot succeed without adhering to sound principles in the planning, development, and execution of logistics support for the exploration crews and their mission equipment. While much attention will focus upon the development of reliable, robust, heavy lift launch vehicles, and scientific, technological breakthroughs for SEI, of equal concern is the supportability and sustainability of systems designed for mission operations and crew life support on the lunar and Martian surfaces

    Analyticity and Integrabiity in the Chiral Potts Model

    Full text link
    We study the perturbation theory for the general non-integrable chiral Potts model depending on two chiral angles and a strength parameter and show how the analyticity of the ground state energy and correlation functions dramatically increases when the angles and the strength parameter satisfy the integrability condition. We further specialize to the superintegrable case and verify that a sum rule is obeyed.Comment: 31 pages in harvmac including 9 tables, several misprints eliminate

    Duality symmetry, strong coupling expansion and universal critical amplitudes in two-dimensional \Phi^{4} field models

    Full text link
    We show that the exact beta-function \beta(g) in the continuous 2D g\Phi^{4} model possesses the Kramers-Wannier duality symmetry. The duality symmetry transformation \tilde{g}=d(g) such that \beta(d(g))=d'(g)\beta(g) is constructed and the approximate values of g^{*} computed from the duality equation d(g^{*})=g^{*} are shown to agree with the available numerical results. The calculation of the beta-function \beta(g) for the 2D scalar g\Phi^{4} field theory based on the strong coupling expansion is developed and the expansion of \beta(g) in powers of g^{-1} is obtained up to order g^{-8}. The numerical values calculated for the renormalized coupling constant g_{+}^{*} are in reasonable good agreement with the best modern estimates recently obtained from the high-temperature series expansion and with those known from the perturbative four-loop renormalization-group calculations. The application of Cardy's theorem for calculating the renormalized isothermal coupling constant g_{c} of the 2D Ising model and the related universal critical amplitudes is also discussed.Comment: 16 pages, REVTeX, to be published in J.Phys.A:Math.Ge

    Griffiths-McCoy singularities in random quantum spin chains: Exact results through renormalization

    Full text link
    The Ma-Dasgupta-Hu renormalization group (RG) scheme is used to study singular quantities in the Griffiths phase of random quantum spin chains. For the random transverse-field Ising spin chain we have extended Fisher's analytical solution to the off-critical region and calculated the dynamical exponent exactly. Concerning other random chains we argue by scaling considerations that the RG method generally becomes asymptotically exact for large times, both at the critical point and in the whole Griffiths phase. This statement is checked via numerical calculations on the random Heisenberg and quantum Potts models by the density matrix renormalization group method.Comment: 4 pages RevTeX, 2 figures include
    corecore