5,270 research outputs found

    Exact solution of a 2d random Ising model

    Full text link
    The model considered is a d=2 layered random Ising system on a square lattice with nearest neighbours interaction. It is assumed that all the vertical couplings are equal and take the positive value J while the horizontal couplings are quenched random variables which are equal in the same row but can take the two possible values J and J-K in different rows. The exact solution is obtained in the limit case of infinite K for any distribution of the horizontal couplings. The model which corresponds to this limit can be seen as an ordinary Ising system where the spins of some rows, chosen at random, are frozen in an antiferromagnetic order. No phase transition is found if the horizontal couplings are independent random variables while for correlated disorder one finds a low temperature phase with some glassy properties.Comment: 10 pages, Plain TeX, 3 ps figures, submitted to Europhys. Let

    An extreme ultraviolet spectrometer experiment for the Shuttle Get Away Special Program

    Get PDF
    An extreme ultraviolet (EUV) spectrometer experiment operated successfully during the STS-7 mission in an experiment to measure the global and diurnal variation of the EUV airglow. The spectrometer is an F 3.5 Wadsworth mount with mechanical collimator, a 75 x 75 mm grating, and a bare microchannel plate detector providing a spectral resolution of 7 X FWHM. Read-out of the signal is through discrete channels or resistive anode techniques. The experiment includes a microcomputer, 20 Mbit tape recorder, and a 28V, 40 Ahr silver-zinc battery. It is the first GAS payload to use an opening door. The spectrometer's 0.1 x 4.2 deg field of view is pointed vertically out of the shuttle bay. During the STS-7 flight data were acquired continuously for a period of 5 hours and 37 minutes, providing spectra of the 570 A to 850 A wavelength region of the airglow. Five diurnal cycles of the 584 A emission of neutral helium and the 834 A emission of ionized atomic oxygen were recorded. The experiment also recorded ion events and pressure pulses associated with thruster firings. The experiment is to fly again on Mission 41-F

    Steady States of a Nonequilibrium Lattice Gas

    Full text link
    We present a Monte Carlo study of a lattice gas driven out of equilibrium by a local hopping bias. Sites can be empty or occupied by one of two types of particles, which are distinguished by their response to the hopping bias. All particles interact via excluded volume and a nearest-neighbor attractive force. The main result is a phase diagram with three phases: a homogeneous phase, and two distinct ordered phases. Continuous boundaries separate the homogeneous phase from the ordered phases, and a first-order line separates the two ordered phases. The three lines merge in a nonequilibrium bicritical point.Comment: 14 pages, 24 figure

    Griffiths-McCoy singularities in random quantum spin chains: Exact results through renormalization

    Full text link
    The Ma-Dasgupta-Hu renormalization group (RG) scheme is used to study singular quantities in the Griffiths phase of random quantum spin chains. For the random transverse-field Ising spin chain we have extended Fisher's analytical solution to the off-critical region and calculated the dynamical exponent exactly. Concerning other random chains we argue by scaling considerations that the RG method generally becomes asymptotically exact for large times, both at the critical point and in the whole Griffiths phase. This statement is checked via numerical calculations on the random Heisenberg and quantum Potts models by the density matrix renormalization group method.Comment: 4 pages RevTeX, 2 figures include

    Duality symmetry, strong coupling expansion and universal critical amplitudes in two-dimensional \Phi^{4} field models

    Full text link
    We show that the exact beta-function \beta(g) in the continuous 2D g\Phi^{4} model possesses the Kramers-Wannier duality symmetry. The duality symmetry transformation \tilde{g}=d(g) such that \beta(d(g))=d'(g)\beta(g) is constructed and the approximate values of g^{*} computed from the duality equation d(g^{*})=g^{*} are shown to agree with the available numerical results. The calculation of the beta-function \beta(g) for the 2D scalar g\Phi^{4} field theory based on the strong coupling expansion is developed and the expansion of \beta(g) in powers of g^{-1} is obtained up to order g^{-8}. The numerical values calculated for the renormalized coupling constant g_{+}^{*} are in reasonable good agreement with the best modern estimates recently obtained from the high-temperature series expansion and with those known from the perturbative four-loop renormalization-group calculations. The application of Cardy's theorem for calculating the renormalized isothermal coupling constant g_{c} of the 2D Ising model and the related universal critical amplitudes is also discussed.Comment: 16 pages, REVTeX, to be published in J.Phys.A:Math.Ge

    Dimer and N\'eel order-parameter fluctuations in the spin-fluid phase of the s=1/2 spin chain with first and second neighbor couplings

    Full text link
    The dynamical properties at T=0 of the one-dimensional (1D) s=1/2 nearest-neighbor (nn) XXZ model with an additional isotropic next-nearest-neighbor (nnn) coupling are investigated by means of the recursion method in combination with techniques of continued-fraction analysis. The focus is on the dynamic structure factors S_{zz}(q,\omega) and S_{DD}(q,\omega), which describe (for q=\pi) the fluctuations of the N\'eel and dimer order parameters, respectively. We calculate (via weak-coupling continued-fraction analysis) the dependence on the exchange constants of the infrared exponent, the renormalized bandwidth of spinon excitations, and the spectral-weight distribution in S_{zz}(\pi,\omega) and S_{DD}(\pi,\omega), all in the spin-fluid phase, which is realized for planar nnnn anisotropy and sufficiently weak nnn coupling. For some parameter values we find a discrete branch of excitations above the spinon continuum. They contribute to S_{zz}(q,\omega) but not to S_{DD}(q,\omega).Comment: RevTex file (7 pages), 8 figures (uuencoded ps file) available from author

    Entropy and Correlation Functions of a Driven Quantum Spin Chain

    Full text link
    We present an exact solution for a quantum spin chain driven through its critical points. Our approach is based on a many-body generalization of the Landau-Zener transition theory, applied to fermionized spin Hamiltonian. The resulting nonequilibrium state of the system, while being a pure quantum state, has local properties of a mixed state characterized by finite entropy density associated with Kibble-Zurek defects. The entropy, as well as the finite spin correlation length, are functions of the rate of sweep through the critical point. We analyze the anisotropic XY spin 1/2 model evolved with a full many-body evolution operator. With the help of Toeplitz determinants calculus, we obtain an exact form of correlation functions. The properties of the evolved system undergo an abrupt change at a certain critical sweep rate, signaling formation of ordered domains. We link this phenomenon to the behavior of complex singularities of the Toeplitz generating function.Comment: 16 pgs, 7 fg

    On the occurrence of oscillatory modulations in the power-law behavior of dynamic and kinetic processes in fractals

    Full text link
    The dynamic and kinetic behavior of processes occurring in fractals with spatial discrete scale invariance (DSI) is considered. Spatial DSI implies the existence of a fundamental scaling ratio (b_1). We address time-dependent physical processes, which as a consequence of the time evolution develop a characteristic length of the form ξt1/z\xi \propto t^{1/z}, where z is the dynamic exponent. So, we conjecture that the interplay between the physical process and the symmetry properties of the fractal leads to the occurrence of time DSI evidenced by soft log-periodic modulations of physical observables, with a fundamental time scaling ratio given by τ=b1z\tau = b_1 ^z. The conjecture is tested numerically for random walks, and representative systems of broad universality classes in the fields of irreversible and equilibrium critical phenomena.Comment: 6 pages, 3 figures. Submitted to EP

    "I'm a Professor, which isn't usually a dangerous job": Internet-facilitated Harassment and Its Impact on Researchers

    Get PDF
    While the Internet has dramatically increased the exposure that research can receive, it has also facilitated harassment against scholars. To understand the impact that these attacks can have on the work of researchers, we perform a series of systematic interviews with researchers including academics, journalists, and activists, who have experienced targeted, Internet-facilitated harassment. We provide a framework for understanding the types of harassers that target researchers, the harassment that ensues, and the personal and professional impact on individuals and academic freedom. We then study preventative and remedial strategies available, and the institutions that prevent some of these strategies from being more effective. Finally, we discuss the ethical structures that could facilitate more equitable access to participating in research without serious personal suffering
    corecore