The dynamical properties at T=0 of the one-dimensional (1D) s=1/2
nearest-neighbor (nn) XXZ model with an additional isotropic
next-nearest-neighbor (nnn) coupling are investigated by means of the recursion
method in combination with techniques of continued-fraction analysis. The focus
is on the dynamic structure factors S_{zz}(q,\omega) and S_{DD}(q,\omega),
which describe (for q=\pi) the fluctuations of the N\'eel and dimer order
parameters, respectively. We calculate (via weak-coupling continued-fraction
analysis) the dependence on the exchange constants of the infrared exponent,
the renormalized bandwidth of spinon excitations, and the spectral-weight
distribution in S_{zz}(\pi,\omega) and S_{DD}(\pi,\omega), all in the
spin-fluid phase, which is realized for planar nn anisotropy and sufficiently
weak nnn coupling. For some parameter values we find a discrete branch of
excitations above the spinon continuum. They contribute to S_{zz}(q,\omega) but
not to S_{DD}(q,\omega).Comment: RevTex file (7 pages), 8 figures (uuencoded ps file) available from
author