4 research outputs found

    High-Throughput, Portable Microfluidic Aptamer Assay

    Get PDF
    Aptamer-based assays are a powerful platform for sensing a wide variety of biochemical targets, including drugs, disease biomarker, and biomolecules. However, aptamer assays often lack rapid identification and high-throughput screening. Performing an aptamer-based assay on a microfluidic device is a promising solution to increase throughput, portability, and sensitivity. In this paper, we present a microfluidic device capable of running aptamer-based assays. Our device utilizes normally-closed valves and a central micropump to move fluids throughout the chip. One chip could theoretically be scaled up to run multiple assays, and multiple of these microfluidic devices could be run in parallel to increase throughput. Our experiments characterized the actuation pressure needed to normally-closed valves with different size parameters, showed and characterized flow using both oil and water solutions, and demonstrated modular movement on a chip with six micropumps. Lastly, we designed a cartridge topper system to eliminate the need for pins leading to a pneumatic controller so chips could easily be switched out. By demonstrating flow and mixing, our chip is fully capable of running an aptamer-based assay

    Matrix density regulates adipocyte phenotype

    No full text
    ABSTRACTAlterations of the extracellular matrix contribute to adipose tissue dysfunction in metabolic disease. We studied the role of matrix density in regulating human adipocyte phenotype in a tunable hydrogel culture system. Lipid accumulation was maximal in intermediate hydrogel density of 5 weight %, relative to 3% and 10%. Adipogenesis and lipid and oxidative metabolic gene pathways were enriched in adipocytes in 5% relative to 3% hydrogels, while fibrotic gene pathways were enriched in 3% hydrogels. These data demonstrate that the intermediate density matrix promotes a more adipogenic, less fibrotic adipocyte phenotype geared towards increased lipid and aerobic metabolism. These observations contribute to a growing literature describing the role of matrix density in regulating adipose tissue function

    Matrix density regulates adipocyte phenotype

    No full text
    Alterations of the extracellular matrix contribute to adipose tissue dysfunction in metabolic disease. We studied the role of matrix density in regulating human adipocyte phenotype in a tunable hydrogel culture system. Lipid accumulation was maximal in intermediate hydrogel density of 5 weight %, relative to 3% and 10%. Adipogenesis and lipid and oxidative metabolic gene pathways were enriched in adipocytes in 5% relative to 3% hydrogels, while fibrotic gene pathways were enriched in 3% hydrogels. These data demonstrate that the intermediate density matrix promotes a more adipogenic, less fibrotic adipocyte phenotype geared towards increased lipid and aerobic metabolism. These observations contribute to a growing literature describing the role of matrix density in regulating adipose tissue function.</p
    corecore