5,939 research outputs found

    Design features and results from fatigue reliability research machines

    Get PDF
    Design and performance tests for reversed bending with steady torque fatigue test machine using notched steel specimen

    SONTRAC—A low background, large area solar neutron spectrometer

    Get PDF
    SONTRAC is a scintillating fiber neutron detector designed to measure solar flare neutrons from a balloon or spacecraft platform. The instrument is comprised of alternating orthogonal planes of scintillator fibers viewed by photomultiplier tubes and image intensifier/CCD camera optics. It operates by tracking the paths of recoil protons from the double scatter of 20 to 200 MeV neutrons off hydrogen in the plastic scintillator, thereby providing the necessary information to determine the incident neutron direction and energy. SONTRAC is also capable of detecting and measuring high-energy gamma rays \u3e20 MeV as a “solid-state spark chamber.” The self-triggering and track imaging features of a prototype for tracking in two dimensions have been demonstrated in calibrations with cosmic-ray muons, 14 to ∼65 MeV neutrons and ∼20 MeV protons

    Prototype for SONTRAC: a scintillating plastic fiber detector for solar neutron spectroscopy

    Get PDF
    We report the scientific motivation for and performance measurements of a prototype detector system for SONTRAC, a solar neutron tracking experiment designed to study high- energy solar flare processes. The full SONTRAC instrument will measure the energy and direction of 20 to 200 MeV neutrons by imaging the ionization tracks of the recoil protons in a densely packed bundle of scintillating plastic fibers. The prototype detector consists of a 12.7 mm square bundle of 250 micrometer scintillating plastic fibers, 10 cm long. A photomultiplier detects scintillation light from one end of the fiber bundle and provides a detection trigger to an image intensifier/CCD camera system at the opposite end. The image of the scintillation light is recorded. By tracking the recoil protons from individual neutrons the kinematics of the scattering are determined, providing a high signal to noise measurement. The predicted energy resolution is 10% at 20 MeV, improving with energy. This energy resolution translates into an uncertainty in the production time of the neutron at the Sun of 30 s for a 20 MeV neutron, also improving with energy. A SONTRAC instrument will also be capable of detecting and measuring high-energy gamma rays greater than 20 MeV as a \u27solid-state spark chamber.\u27 The self-triggering and track imaging features of the prototype are demonstrated with cosmic ray muons and 14 MeV neutrons. Design considerations for a space flight instrument are presented

    A prototype for SONTRAC, a scintillating plastic fiber tracking detector for neutron imaging and spectroscopy

    Get PDF
    We report on tests of a prototype detector system designed to perform imaging and spectroscopy on 20 to 250 MeV neutrons. Although developed for the study of high-energy solar flare processes, the detection techniques employed for SONTRAC, the SOlar Neutron TRACking experiment, can be applied to measurements in a variety of disciplines including atmospheric physics, radiation therapy and nuclear materials monitoring. The SONTRAC instrument measures the energy and direction ofneutrons by detecting double neutron-proton scatters and recording images of the ionization tracks of the recoil protons in a densely packed bundle of scintillating plastic fibers stacked in orthogonal layers. By tracking the recoil protons from individual neutrons, the kinematics of the scatter are determined. This directional information results in a high signal to noise measurement. SONTRAC is also capable of detecting and measuring high-energy gamma rays \u3e20 MeV as a “solid-state spark chamber”. The self-triggering and track imaging features of a prototype for tracking in two dimensions are demonstrated in calibrations with cosmic-ray muons, 14 to ~65 MeV neutrons and ~20 MeV protons

    A Coordinated Radio Afterglow Program

    Get PDF
    We describe a ground-based effort to find and study afterglows at centimeter and millimeter wavelengths. We have observed all well-localized gamma-ray bursts in the Northern and Southern sky since BeppoSAX first started providing rapid positions in early 1997. Of the 23 GRBs for which X-ray afterglows have been detected, 10 have optical afterglows and 9 have radio afterglows. A growing number of GRBs have both X-ray and radio afterglows but lack a corresponding optical afterglow.Comment: To appear in Proc. of the 5th Huntsville Gamma-Ray Burst Symposium, 5 pages, LaTe

    A Strong Upper Limit on the Pulsed Radio Luminosity of the Compact Object 1RXS J141256.0+792204

    Full text link
    The ROSAT X-ray source 1RXS J141256.0+792204 has recently been identified as a likely compact object whose properties suggest it could be a very nearby radio millisecond pulsar at d = 80 - 260pc. We investigated this hypothesis by searching for radio pulsations using the Westerbork Synthesis Radio Telescope. We observed 1RXS J141256.0+792204 at 385 and 1380MHz, recording at high time and frequency resolution in order to maintain sensitivity to millisecond pulsations. These data were searched both for dispersed single pulses and using Fourier techniques sensitive to constant and orbitally modulated periodicities. No radio pulsations were detected in these observations, resulting in pulsed radio luminosity limits of L_400 ~ 0.3 (d/250pc)^2 mJy kpc^2 and L_1400 ~ 0.03 (d/250pc)^2 mJy kpc^2 at 400 and 1400MHz respectively. The lack of detectable radio pulsations from 1RXS J141256.0+792204 brings into question its identification as a nearby radio pulsar, though, because the pulsar could be beamed away from us, this hypothesis cannot be strictly ruled out.Comment: To appear in A&A. 3 page

    Wear Behavior of Polybenzimidazole Bonded Solid-Film Lubricants

    Get PDF
    are presented
    corecore