58 research outputs found

    Process of Producing Equine Viral Arteritis Vaccine and Product Thereof

    Get PDF
    A process is disclosed for producing an avirulent attenuated live virus vaccine for use in immunizing horses against equine viral arteritis and for simultaneously obviating the transmission of the disease from a vaccinated horse to a non-vaccinated horse. The invention also includes the product derived from practice of the process and typical examples of the efficacy of the product are disclosed

    Clinical hypoxemia score for outpatient child pneumonia care lacking pulse oximetry in Africa and South Asia

    Get PDF
    Background: Pulse oximeters are not routinely available in outpatient clinics in low- and middle-income countries. We derived clinical scores to identify hypoxemic child pneumonia. / Methods: This was a retrospective pooled analysis of two outpatient datasets of 3–35 month olds with World Health Organization (WHO)-defined pneumonia in Bangladesh and Malawi. We constructed, internally validated, and compared fit & discrimination of four models predicting SpO2 < 93% and <90%: (1) Integrated Management of Childhood Illness guidelines, (2) WHO-composite guidelines, (3) Independent variable least absolute shrinkage and selection operator (LASSO); (4) Composite variable LASSO. / Results: 12,712 observations were included. The independent and composite LASSO models discriminated moderately (both C-statistic 0.77) between children with a SpO2 < 93% and ≥94%; model predictive capacities remained moderate after adjusting for potential overfitting (C-statistic 0.74 and 0.75). The IMCI and WHO-composite models had poorer discrimination (C-statistic 0.56 and 0.68) and identified 20.6% and 56.8% of SpO2 < 93% cases. The highest score stratum of the independent and composite LASSO models identified 46.7% and 49.0% of SpO2 < 93% cases. Both LASSO models had similar performance for a SpO2 < 90%. / Conclusions: In the absence of pulse oximeters, both LASSO models better identified outpatient hypoxemic pneumonia cases than the WHO guidelines. Score external validation and implementation are needed

    Risk and accuracy of outpatient-identified hypoxaemia for death among suspected child pneumonia cases in rural Bangladesh: a multifacility prospective cohort study

    Get PDF
    BACKGROUND: Hypoxaemic pneumonia mortality risk in low-income and middle-income countries is high in children who have been hospitalised, but unknown among outpatient children. We sought to establish the outpatient burden, mortality risk, and prognostic accuracy of death from hypoxaemia in children with suspected pneumonia in Bangladesh. METHODS: We conducted a prospective community-based cohort study encompassing three upazila (subdistrict) health complex catchment areas in Sylhet, Bangladesh. Children aged 3-35 months participating in a community surveillance programme and presenting to one of three upazila health complex Integrated Management of Childhood Illness (IMCI) outpatient clinics with an acute illness and signs of difficult breathing (defined as suspected pneumonia) were enrolled in the study; because lower respiratory tract infection mortality mainly occurs in children younger than 1 year, the primary study population comprised children aged 3-11 months. Study physicians recorded WHO IMCI pneumonia guideline clinical signs and peripheral arterial oxyhaemoglobin saturations (SpO2) in room air. They treated children with pneumonia with antibiotics (oral amoxicillin [40 mg/kg per dose twice per day for 5-7 days, as per local practice]), and recommended oxygen, parenteral antibiotics, and hospitalisation for those with an SpO2 of less than 90%, WHO IMCI danger signs, or severe malnutrition. Community health workers documented the children's vital status and the date of any vital status changes during routine household surveillance (one visit to each household every 2 months). The primary outcome was death at 2 weeks after enrolment in children aged 3-11 months (primary study population) and 12-35 months (secondary study population). Primary analyses included estimating the outpatient prevalence, mortality risk, and prognostic accuracy of hypoxaemia for death in children aged 3-11 months with suspected pneumonia. Risk ratios were produced by fitting a multivariable model that regressed predefined SpO2 ranges (<90%, 90-93%, and 94-100%) on the primary 2-week mortality outcome (binary outcome) using Poisson models with robust variance estimation. We established the prognostic accuracy of WHO IMCI guidelines for death with and without varying SpO2 thresholds. FINDINGS: Participants were recruited between Sept 1, 2015, to Aug 31, 2017. During the study period, a total of 7440 children aged 3-35 months with the first suspected pneumonia episode were enrolled, of whom 3848 (54·3%) with an attempted pulse oximeter measurement and 2-week outcome were included in our primary study population of children aged 3-11-months. Among children aged 3-11 months, an SpO2 of less than 90% occurred in 102 (2·7%) of 3848 children, an SpO2 of 90-93% occurred in 306 (8·0%) children, a failed SpO2 measurement occurred in 67 (1·7%) children, and 24 (0·6%) children with suspected pneumonia died. Compared with an SpO2 of 94-100% (3373 [87·7%] of 3848), the adjusted risk ratio for death was 10·3 (95% CI 3·2-32·3; p<0·001) for an SpO2 of less than 90%, 4·3 (1·5-11·8; p=0·005) for an SpO2 of 90-93%, and 11·4 (3·1-41·4; p<0·001) for a failed measurement. When not considering pulse oximetry, of the children who died, WHO IMCI guidelines identified only 25·0% (95% CI 9·7-46·7; six of 24 children) as eligible for referral to hospital. For identifying deaths, in children with an SpO2 of less than 90% WHO IMCI guidelines had a 41·7% sensitivity (95% CI 22·1-63·4) and 89·7% specificity (88·7-90·7); for children with an SpO2 of less than 90% or measurement failure the guidelines had a 54·2% sensitivity (32·8-74·4) and 88·3% specificity (87·2-89·3); and for children with an SpO2 of less than 94% or measurement failure the guidelines had a 62·5% sensitivity (40·6-81·2) and 81·3% specificity (80·0-82·5). INTERPRETATION: These findings support pulse oximeter use during the outpatient care of young children with suspected pneumonia in Bangladesh as well as the re-evaluation of the WHO IMCI currently recommended threshold of an SpO2 less than 90% for hospital referral. FUNDING: Fogarty International Center of the National Institutes of Health (K01TW009988), The Bill & Melinda Gates Foundation (OPP1084286 and OPP1117483), and GlaxoSmithKline (90063241)

    Clinical hypoxemia score for outpatient child pneumonia care lacking pulse oximetry in Africa and South Asia

    Get PDF
    BackgroundPulse oximeters are not routinely available in outpatient clinics in low- and middle-income countries. We derived clinical scores to identify hypoxemic child pneumonia.MethodsThis was a retrospective pooled analysis of two outpatient datasets of 3–35 month olds with World Health Organization (WHO)-defined pneumonia in Bangladesh and Malawi. We constructed, internally validated, and compared fit &amp; discrimination of four models predicting SpO2 &lt; 93% and &lt;90%: (1) Integrated Management of Childhood Illness guidelines, (2) WHO-composite guidelines, (3) Independent variable least absolute shrinkage and selection operator (LASSO); (4) Composite variable LASSO.Results12,712 observations were included. The independent and composite LASSO models discriminated moderately (both C-statistic 0.77) between children with a SpO2 &lt; 93% and ≥94%; model predictive capacities remained moderate after adjusting for potential overfitting (C-statistic 0.74 and 0.75). The IMCI and WHO-composite models had poorer discrimination (C-statistic 0.56 and 0.68) and identified 20.6% and 56.8% of SpO2 &lt; 93% cases. The highest score stratum of the independent and composite LASSO models identified 46.7% and 49.0% of SpO2 &lt; 93% cases. Both LASSO models had similar performance for a SpO2 &lt; 90%.ConclusionsIn the absence of pulse oximeters, both LASSO models better identified outpatient hypoxemic pneumonia cases than the WHO guidelines. Score external validation and implementation are needed

    Assessing Monkeypox Virus Prevalence in Small Mammals at the Human-Animal Interface in the Democratic Republic of the Congo

    Get PDF
    During 2012, 2013 and 2015, we collected small mammals within 25 km of the town of Boende in Tshuapa Province, the Democratic Republic of the Congo. The prevalence of monkeypox virus (MPXV) in this area is unknown; however, cases of human infection were previously confirmed near these collection sites. Samples were collected from 353 mammals (rodents, shrews, pangolins, elephant shrews, a potamogale, and a hyrax). Some rodents and shrews were captured from houses where human monkeypox cases have recently been identified, but most were trapped in forests and agricultural areas near villages. Real-time PCR and ELISA were used to assess evidence of MPXV infection and other Orthopoxvirus (OPXV) infections in these small mammals. Seven (2.0%) of these animal samples were found to be anti-orthopoxvirus immunoglobulin G (IgG) antibody positive (six rodents: two Funisciurus spp.; one Graphiurus lorraineus; one Cricetomys emini; one Heliosciurus sp.; one Oenomys hypoxanthus, and one elephant shrew Petrodromus tetradactylus); no individuals were found positive in PCR-based assays. These results suggest that a variety of animals can be infected with OPXVs, and that epidemiology studies and educational campaigns should focus on animals that people are regularly contacting, including larger rodents used as protein sources

    Pneumococcal Conjugate Vaccine impact assessment in Bangladesh [version 1; referees: 1 approved, 2 approved with reservations]

    Get PDF
    The study examines the impact of the introduction of 10-valent Pneumococcal Conjugate Vaccine (PCV10) into Bangladesh’s national vaccine program. PCV10 is administered to children under 1 year-old; the scheduled ages of administration are at 6, 10, and 18 weeks. The study is conducted in ~770,000 population containing ~90,000 <5 children in Sylhet, Bangladesh and has five objectives: 1) To collect data on community-based pre-PCV incidence rates of invasive pneumococcal diseases (IPD) in 0-59 month-old children in Sylhet, Bangladesh; 2) To evaluate the effectiveness of PCV10 introduction on Vaccine Type (VT) IPD in 3-59 month-old children using an incident case-control study design. Secondary aims include measuring the effects of PCV10 introduction on all IPD in 3-59 month-old children using case-control study design, and quantifying the emergence of Non Vaccine Type IPD; 3) To evaluate the effectiveness of PCV10 introduction on chest radiograph-confirmed pneumonia in children 3-35 months old using incident case-control study design. We will estimate the incidence trend of clinical and radiologically-confirmed pneumonia in 3-35 month-old children in the study area before and after introduction of PCV10; 4) To determine the feasibility and utility of lung ultrasound for the diagnosis of pediatric pneumonia in a large sample of children in a resource-limited setting. We will also evaluate the effectiveness of PCV10 introduction on ultrasound-confirmed pneumonia in 3-35 month-old children using an incident case-control design and to examine the incidence trend of ultrasound-confirmed pneumonia in 3-35 month-old children in the study area before and after PCV10 introduction; and 5) To determine the direct and indirect effects of vaccination status on nasopharyngeal colonization on VT pneumococci among children with pneumonia.  This paper presents the methodology. The study will allow us to conduct a comprehensive and robust assessment of the impact of national introduction of PCV10 on pneumococcal disease in Bangladesh

    Achieving Deep Cuts in the Carbon Intensity of U.S. Automobile Transportation by 2050: Complementary Roles for Electricity and Biofuels

    Full text link
    Passenger cars in the United States (U.S.) rely primarily on petroleum-derived fuels and contribute the majority of U.S. transportation-related greenhouse gas (GHG) emissions. Electricity and biofuels are two promising alternatives for reducing both the carbon intensity of automotive transportation and U.S. reliance on imported oil. However, as standalone solutions, the biofuels option is limited by land availability and the electricity option is limited by market adoption rates and technical challenges. This paper explores potential GHG emissions reductions attainable in the United States through 2050 with a county-level scenario analysis that combines ambitious plug-in hybrid electric vehicle (PHEV) adoption rates with scale-up of cellulosic ethanol production. With PHEVs achieving a 58% share of the passenger car fleet by 2050, phasing out most corn ethanol and limiting cellulosic ethanol feedstocks to sustainably produced crop residues and dedicated crops, we project that the United States could supply the liquid fuels needed for the automobile fleet with an average blend of 80% ethanol (by volume) and 20% gasoline. If electricity for PHEV charging could be supplied by a combination of renewables and natural-gas combined-cycle power plants, the carbon intensity of automotive transport would be 79 g CO2e per vehicle-kilometer traveled, a 71% reduction relative to 2013

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore