74 research outputs found

    Investigating GNSS multipath effects induced by co-located Radar Corner Reflectors

    Get PDF
    Abstract Radar Corner Reflectors (CR) are increasingly used as reference targets for land surface deformation measurements with the Interferometric Synthetic Aperture Radar (InSAR) technique. When co-located with ground-based Global Navigation Satellite Systems (GNSS) infrastructure, InSAR observations at CR can be used to integrate relative measurements of surface deformation into absolute reference frames defined by GNSS. However, CR are also a potential source of GNSS multipath effects and may therefore have a detrimental effect on the GNSS observations. In this study, we compare daily GNSS coordinate time series and 30-second signal-to-noise ratio (SNR) observations for periods before and after CR deployment at a GNSS site. We find that neither the site coordinates nor the SNR values are significantly affected by the CR deployment, with average changes being within 0.1 mm for site coordinates and within 1 % for SNR values. Furthermore, we generate empirical site models by spatially stacking GNSS observation residuals to visualise and compare the spatial pattern in the surroundings of GNSS sites. The resulting stacking maps indicate oscillating patterns at elevation angles above 60 degrees which can be attributed to the CR deployed at the analysed sites. The effect depends on the GNSS antenna used at a site with the magnitude of multipath patterns being around three times smaller for a high-quality choke ring antenna compared to a ground plane antenna without choke rings. In general, the CR-induced multipath is small compared to multipath effects at other GNSS sites located in a different environment (e. g. mounted on a building)

    A Joint Analysis of GPS Displacement and GRACE Geopotential Data for Simultaneous Estimation of Geocenter Motion and Gravitational Field

    Get PDF
    Gravitational potential data from GRACE are being used to study mass redistribution within and between the atmosphere, hydrosphere, cryosphere, and solid Earth. The GRACE data are made available in a reference frame with its origin at the center of mass of the Earth system (geocenter) while many other geophysical models and data sets refer to a reference frame attached to the Earth's surface. Changes in the offset between these reference frames (geocenter motion) must be accounted for when GRACE data are used to quantify surface mass changes. In this study, we developed a technique for coestimation of geocenter motion and gravitational potential field seamlessly from degree 1 to 90 by simultaneously inverting a set of globallydistributed GPS displacement time series and the temporallyvarying GRACE gravity data. We found that the effect of geocenter motion was evident particularly in the GPS time series of horizontal displacements. Our estimates of geocenter motion are most consistent with the Satellite Laser Ranging (SLR) results within 1 mm in X and Z components and a submillimeter in Y component, when compared to monthly variability averaged over the period of 20032016. The overall magnitude of the degree1 (l = 1) surface mass load is estimated to be ~3 cm in equivalent water height annually migrating southwestward from Europe (DecemberJanuary) to the South Pacific (JuneJuly). Our results also show that dense GPS network data improve water storage recovery in major river basins in the United States and Europe by contributing significantly to the recovery of higherdegree (l ~20) geopotential coefficients

    Relationship between glacial isostatic adjustment and gravity perturbations observed by GRACE

    Get PDF
    The Gravity Recovery and Climate Experiment space gravity mission provides one of the principal means of estimating present-day mass loss occurring in polar regions. Extraction of the mass loss signal from the observed gravity changes is complicated by the need to first remove the signal of ongoing glacial isostatic adjustment (GIA) since the Last Glacial Maximum. This can be problematic in regions such as Antarctica where the GIA models are poorly constrained by observation and their accuracy is not well known. We present a new methodology that permits the GIA component to be represented mathematically by a simple, linear expression of the ratio of viscoelastic Love numbers that is valid for a broad range of Earth and ice-load models. The expression is shown to reproduce rigorous computations of surface uplift rates to within 0.3 mm/yr, thus providing a means of inverting simultaneously for present-day mass loss and ongoing GIA with all the accuracy of a fully detailed forward model

    A directional model of tropospheric horizontal gradients in Global Positioning System and its application for particular weather scenarios

    Get PDF
    Improper modeling of horizontal tropospheric gradients in GPS analysis induces errors in estimated parameters, with the largest impact on heights and tropospheric zenith delays. The conventional two-axis tilted plane model of horizontal gradients fails to provide an accurate representation of tropospheric gradients under weather conditions with asymmetric horizontal changes of refractivity. A new parametrization of tropospheric gradients whereby an arbitrary number of gradients are estimated as discrete directional wedges is shown via simulations to significantly improve the accuracy of recovered tropospheric zenith delays in asymmetric gradient scenarios. In a case study of an extreme rain event that occurred in September 2002 in southern France, the new directional parametrization is able to isolate the strong gradients in particular azimuths around the GPS stations consistent with the "V" shape spatial pattern of the observed precipitation. In another study of a network of GPS stations in the Sierra Nevada region where highly asymmetric tropospheric gradients are known to exist, the new directional model significantly improves the repeatabilities of the stations in asymmetric gradient situations while causing slightly degraded repeatabilities for the stations in normal symmetric gradient conditions. The average improvement over the entire network is ∼31%, while the improvement for one of the worst affected sites P631 is ∼49% (from 8.5 mm to 4.3 mm) in terms of weighted root-mean-square (WRMS) error and ∼82% (from -1.1 to -0.2) in terms of skewness. At the same station, the use of the directional model changes the estimates of zenith wet delay by 15 mm (∼25%

    Crustal strain partitioning and the associated earthquake hazard in the eastern Sunda-Banda Arc

    Get PDF
    We use Global Positioning System (GPS) measurements of surface deformation to show that the convergence between the Australian Plate and Sunda Block in eastern Indonesia is partitioned between the megathrust and a continuous zone of back-arc thrusting extending 2000 km from east Java to north of Timor. Although deformation in this back-arc region has been reported previously, its extent and the mechanism of convergence partitioning have hitherto been conjectural. GPS observations establish that partitioning occurs via a combination of anticlockwise rotation of an arc segment called the Sumba Block, and left-lateral movement along a major NE-SW strike-slip fault west of Timor. We also identify a westward extension of the back-arc thrust for 300 km onshore into East Java, accommodating slip of ∼6 mm/yr. These results highlight a major new seismic threat for East Java and draw attention to the pronounced seismic and tsunami threat to Bali, Lombok, Nusa Tenggara, and other coasts along the Flores Sea

    Global Positioning System measurements of strain accumulation and slip transfer through the restraining bend along the Dead Sea fault system in Lebanon

    Get PDF
    Approximately 4 yr of campaign and continuous Global Positioning System (GPS) measurements across the Dead Sea fault system (DSFS) in Lebanon provide direct measurements of interseismic strain accumulation along a 200-km-long restraining bend in this continental transform fault. Late Cenozoic transpression within this restraining bend has maintained more than 3000 m of topography in the Mount Lebanon and Anti-Lebanon ranges. The GPS velocity field indicates 4-5 mm yr-1 of relative plate motion is transferred through the restraining bend to the northern continuation of the DSFS in northwestern Syria. Near-field GPS velocities are generally parallel to the major, left-lateral strike-slip faults, suggesting that much of the expected convergence across the restraining bend is likely accommodated by different structures beyond the aperture of the GPS network (e.g. offshore Lebanon and, possibly, the Palmyride fold belt in SW Syria). Hence, these geodetic results suggest a partitioning of crustal deformation involving strike-slip displacements in the interior of the restraining bend, and crustal shortening in the outer part of the restraining bend. Within the uncertainties, the GPS-based rates of fault slip compare well with Holocene-averaged estimates of slip along the two principal strike-slip faults: the Yammouneh and Serghaya faults. Of these two faults, more slip occurs on the Yammouneh fault, which constitutes the primary plate boundary structure between the Arabia and Sinai plates. Hence, the Yammouneh fault is the structural linkage that transfers slip to the northern part of the transform in northwestern Syria. From the perspective of the regional earthquake hazard, the Yammouneh fault is presently locked and accumulating interseismic strain

    Active tectonics of the western Mediterranean: Geodetic evidence for roll back of a delaminated subcontinental lithospheric slab beneath the Rif Mountains, Morocco

    Get PDF
    Copyright 2006, Geological Society of America. See also: http://www.geosociety.org; http://atlas.geo.cornell.edu/morocco/publications/fadil2006.htmSurface deformation in Morocco derived from five years of GPS survey observations of a 22-station network, four continuously recording GPS stations, and four IGS stations in Iberia indicate roughly southward motion (~3 mm/yr) of the Rif Mountains, Morocco relative to stable Africa. Motion of the Rif is approximately normal to the direction of Africa-Eurasia relative motion, which is predominantly strike slip, and results in shortening of the Rif and subsequent crustal extension of the adjacent Alboran Sea region. The sense, and the N-S asymmetry of the observed deformation (i.e., no evidence for north-directed shortening in the Betic Mountains north of the Alboran Sea) cannot be easily explained in terms of crustal plate interactions suggesting that dynamic processes below the crust are driving the recent geologic evolution of the western Mediterranean. The model that best fits the observations involves delamination and southward roll back of the African lithospheric mantle under the Alboran and Rif domains

    Slow slip events and the 2016 Te Araroa Mw 7.1 earthquake interaction: Northern Hikurangi subduction, New Zealand

    Get PDF
    Following a sequence of three Slow Slip Events (SSEs) on the northern Hikurangi Margin, between June 2015 and August 2016, a Mw 7.1 earthquake struck ~30 km offshore of the East Cape region in the North Island of New Zealand on the 2 September 2016 (NZ local time). The earthquake was also followed by a transient deformation event (SSE or afterslip) northeast of the North Island, closer to the earthquake source area. We use data from New Zealand’s continuous Global Positioning System networks to invert for the SSE slip distribution and evolution on the Hikurangi subduction interface. Our slip inversion results show an increasing amplitude of the slow slip toward the Te Araroa earthquake foreshock and main shock area, suggesting a possible triggering of the Mw 7.1 earthquake by the later stage of the slow slip sequence. We also show that the transient deformation following the Te Araroa earthquake ruptured a portion of the Hikurangi Trench northeast of the North Island, farther north than any previously observed Hikurangi margin SSEs. Our slip inversion and the coulomb stress calculation suggest that this transient may have been induced as a response to the increase in the static coulomb stress change downdip of the rupture plane on the megathrust. These observations show the importance of considering the interaction between slow slip events, seismic, and aseismic events, not only on the same megathrust interface but also on faults within the surrounding crust
    corecore