4,237 research outputs found

    Rapid and efficient stable gene transfer to mesenchymal stromal cells using a modified foamy virus vector

    Get PDF
    Mesenchymal stromal cells (MSCs) hold great promise for regenerative medicine. Stable ex vivo gene transfer to MSCs could improve the outcome and scope of MSC therapy, but current vectors require multiple rounds of transduction, involve genotoxic viral promoters and/or the addition of cytotoxic cationic polymers in order to achieve efficient transduction. We describe a self-inactivating foamy virus vector (FVV), incorporating the simian macaque foamy virus envelope and using physiological promoters, which efficiently transduces murine MSCs (mMSCs) in a single-round. High and sustained expression of the transgene, whether GFP or the lysosomal enzyme, arylsulphatase A (ARSA), was achieved. Defining MSC characteristics (surface marker expression and differentiation potential), as well as long-term engraftment and distribution in the murine brain following intracerebroventricular delivery, are unaffected by FVV transduction. Similarly, greater than 95% of human MSCs (hMSCs) were stably transduced using the same vector, facilitating human application. This work describes the best stable gene transfer vector available for mMSCs and hMSCs

    HI Absorption Toward HII Regions at Small Galactic Longitudes

    Get PDF
    We make a comprehensive study of HI absorption toward HII regions located within Galactic longitudes less than 10 degrees. Structures in the extreme inner Galaxy are traced using the longitude-velocity space distribution of this absorption. We find significant HI absorption associated with the Near and Far 3kpc Arms, the Connecting Arm, Banias Clump 1 and the H I Tilted Disk. We also constrain the line of sight distances to HII regions, by using HI absorption spectra together with the HII region velocities measured by radio recombination lines.Comment: Complete figure set available in online version of journal. Accepted by ApJ August 8, 201

    Noise Correlations in a Coulomb Blockaded Quantum Dot

    Full text link
    We report measurements of current noise auto- and cross-correlation in a tunable quantum dot with two or three leads. As the Coulomb blockade is lifted at finite source-drain bias, the auto-correlation evolves from super-Poissonian to sub-Poissonian in the two-lead case, and the cross-correlation evolves from positive to negative in the three-lead case, consistent with transport through multiple levels. Cross-correlations in the three-lead dot are found to be proportional to the noise in excess of the Poissonian value in the limit of weak output tunneling

    Application of Thermal Storage, Peak Shaving and Cogeneration for Hospitals

    Get PDF
    Energy costs of hospitals can be managed by employing various strategies to control peak electrical demand (KW) while at the same time providing additional security of operation in the event that an equipment failure or a disruption of power from the electric utility occurs. Some electric utilities offer their customers demand (KW) reduction rate incentives. Many hospitals have additional emergency back-up needs for electrical energy. Demand is relatively constant in many hospitals due to high internal loads. These factors coupled with the present competitive alternate fuel market and present opportunities for hospitals to significantly reduce operating costs and provide additional stand-by or back-up electric sources. This paper employs a hospital case study to define and illustrate three energy planning strategies applicable to hospitals. These strategies are peak shaving, thermal storage, cogeneration and/or paralleling with the electric utility

    Shot Noise in Graphene

    Full text link
    We report measurements of current noise in single- and multi-layer graphene devices. In four single-layer devices, including a p-n junction, the Fano factor remains constant to within +/-10% upon varying carrier type and density, and averages between 0.35 and 0.38. The Fano factor in a multi-layer device is found to decrease from a maximal value of 0.33 at the charge-neutrality point to 0.25 at high carrier density. These results are compared to theoretical predictions for shot noise in ballistic and disordered graphene.Comment: related papers available at http://marcuslab.harvard.ed
    • …
    corecore