208 research outputs found
Teachers developing assessment for learning: impact on student achievement
While it is generally acknowledged that increased use of formative assessment (or assessment for learning) leads to higher quality learning, it is often claimed that the pressure in schools to improve the results achieved by students in externally-set tests and examinations precludes its use. This paper reports on the achievement of secondary school students who worked in classrooms where teachers made time to develop formative assessment strategies. A total of 24 teachers (2 science and 2 mathematics teachers, in each of six schools in two LEAs) were supported over a six-month period in exploring and planning their approach to formative assessment, and then, beginning in September 1999, the teachers put these plans into action with selected classes. In order to compute effect sizes, a measure of prior attainment and at least one comparison group was established for each class (typically either an equivalent class taught in the previous year by the same teacher, or a parallel class taught by another teacher). The mean effect size was 0.32
Capture the fracture: a best practice framework and global campaign to break the fragility fracture cycle
Summary
The International Osteoporosis Foundation (IOF) Capture the Fracture Campaign aims to support implementation of Fracture Liaison Services (FLS) throughout the world.
Introduction
FLS have been shown to close the ubiquitous secondary fracture prevention care gap, ensuring that fragility fracture sufferers receive appropriate assessment and intervention to reduce future fracture risk.
Methods
Capture the Fracture has developed internationally endorsed standards for best practice, will facilitate change at the national level to drive adoption of FLS and increase awareness of the challenges and opportunities presented by secondary fracture prevention to key stakeholders. The Best Practice Framework (BPF) sets an international benchmark for FLS, which defines essential and aspirational elements of service delivery.
Results
The BPF has been reviewed by leading experts from many countries and subject to beta-testing to ensure that it is internationally relevant and fit-for-purpose. The BPF will also serve as a measurement tool for IOF to award βCapture the Fracture Best Practice Recognitionβ to celebrate successful FLS worldwide and drive service development in areas of unmet need. The Capture the Fracture website will provide a suite of resources related to FLS and secondary fracture prevention, which will be updated as new materials become available. A mentoring programme will enable those in the early stages of development of FLS to learn from colleagues elsewhere that have achieved Best Practice Recognition. A grant programme is in development to aid clinical systems which require financial assistance to establish FLS in their localities.
Conclusion
Nearly half a billion people will reach retirement age during the next 20Β years. IOF has developed Capture the Fracture because this is the single most important thing that can be done to directly improve patient care, of both women and men, and reduce the spiralling fracture-related care costs worldwide.</p
Comparative Transcriptomes Profiling of Photoperiod-sensitive Male Sterile Rice Nongken 58S During the Male Sterility Transition between Short-day and Long-day
<p>Abstract</p> <p>Background</p> <p>Photoperiod-sensitive genic male sterile (PGMS) rice, Nongken 58S, was discovered in 1973. It has been widely used for the production of hybrid rice, and great achievements have been made in improving rice yields. However, the mechanism of the male sterility transition in PGMS rice remains to be determined.</p> <p>Results</p> <p>To investigate the transcriptome during the male sterility transition in PGMS rice, the transcriptome of Nongken 58S under short-day (SD) and long-day (LD) at the glume primordium differentiation and pistil/stamen primordium forming stages was compared. Seventy-three and 128 differentially expressed genes (DEGs) were identified at the glume primordium differentiation and pistil/stamen primordium forming stages, respectively. Five and 22 genes were markedly up-regulated (β₯ 5-fold), and two and five genes were considerably down-regulated (β₯ 5-fold) under SD during the male sterility transition. Gene ontology annotation and pathway analysis revealed that four biological processes and the circadian rhythms and the flowering pathways coordinately regulated the male sterility transition. Further quantitative PCR analysis demonstrated that the circadian rhythms of <it>OsPRR1, OsPRR37, OsGI, Hd1, OsLHY </it>and <it>OsDof </it>in leaves were obviously different between Nongken 58S and Nongken 58 under LD conditions. Moreover, both <it>OsPRR37 </it>and <it>Hd1 </it>in the inflorescence displayed differences between Nongken 58S and Nongken 58 under both LD and SD conditions.</p> <p>Conclusion</p> <p>The results presented here indicate that the transcriptome in Nongken 58S was significantly suppressed under LD conditions. Among these DEGs, the circadian rhythm and the flowering pathway were involved in the male sterility transition. Furthermore, these pathways were coordinately involved in the male sterility transition in PGMS rice.</p
Lumican Expression in Diaphragm Induced by Mechanical Ventilation
Diaphragmatic dysfunction found in the patients with acute lung injury required prolonged mechanical ventilation. Mechanical ventilation can induce production of inflammatory cytokines and excess deposition of extracellular matrix proteins via up-regulation of transforming growth factor (TGF)-Ξ²1. Lumican is known to participate in TGF-Ξ²1 signaling during wound healing. The mechanisms regulating interactions between mechanical ventilation and diaphragmatic injury are unclear. We hypothesized that diaphragmatic damage by short duration of mechanical stretch caused up-regulation of lumican that modulated TGF-Ξ²1 signaling.Male C57BL/6 mice, either wild-type or lumican-null, aged 3 months, weighing between 25 and 30 g, were exposed to normal tidal volume (10 ml/kg) or high tidal volume (30 ml/kg) mechanical ventilation with room air for 2 to 8 hours. Nonventilated mice served as control groups.High tidal volume mechanical ventilation induced interfibrillar disassembly of diaphragmatic collagen fiber, lumican activation, type I and III procollagen, fibronectin, and Ξ±-smooth muscle actin (Ξ±-SMA) mRNA, production of free radical and TGF-Ξ²1 protein, and positive staining of lumican in diaphragmatic fiber. Mechanical ventilation of lumican deficient mice attenuated diaphragmatic injury, type I and III procollagen, fibronectin, and Ξ±-SMA mRNA, and production of free radical and TGF-Ξ²1 protein. No significant diaphragmatic injury was found in mice subjected to normal tidal volume mechanical ventilation.Our data showed that high tidal volume mechanical ventilation induced TGF-Ξ²1 production, TGF-Ξ²1-inducible genes, e.g., collagen, and diaphragmatic dysfunction through activation of the lumican
Effect of vitamin D on bone mineral density of elderly patients with osteoporosis responding poorly to bisphosphonates
BACKGROUND: Bisphosphonates are indicated in the prevention and treatment of osteoporosis. However, bone mineral density (BMD) continues to decline in up to 15% of bisphosphonate users. While randomized trials have evaluated the efficacy of concurrent bisphosphonates and vitamin D, the incremental benefit of vitamin D remains uncertain. METHODS: Using data from the Canadian Database of Osteoporosis and Osteopenia (CANDOO), we performed a 2-year observational cohort study. At baseline, all patients were prescribed a bisphosphonate and counseled on vitamin D supplementation. After one year, patients were divided into two groups based on their response to bisphosphonate treatment. Non-responders were prescribed vitamin D 1000 IU daily. Responders continued to receive counseling on vitamin D. RESULTS: Of 449 patients identified, 159 were non-responders to bisphosphonates. 94% of patients were women. The mean age of the entire cohort was 74.6 years (standard deviation = 5.6 years). In the cohort of non-responders, BMD at the lumbar spine increased 2.19% (p < 0.001) the year after vitamin D was prescribed compared to a decrease of 0.55% (p = 0.36) the year before. In the cohort of responders, lumbar spine BMD improved 1.45% (p = 0.014) the first year and 1.11% (p = 0.60) the second year. The difference between the two groups was statistically significant the first year (p < 0.001) but not the second (p = 0.60). Similar results were observed at the femoral neck but were not statistically significant. CONCLUSION: In elderly patients with osteoporosis not responding to bisphosphonates, vitamin D 1000 IU daily may improve BMD at the lumbar spine
Involvement of Noradrenergic Transmission in the PVN on CREB Activation, TORC1 Levels, and Pituitary-Adrenal Axis Activity during Morphine Withdrawal
Experimental and clinical findings have shown that administration of adrenoceptor antagonists alleviated different aspects of drug withdrawal and dependence. The present study tested the hypothesis that changes in CREB activation and phosphorylated TORC1 levels in the hypothalamic paraventricular nucleus (PVN) after naloxone-precipitated morphine withdrawal as well as the HPA axis activity arises from Ξ±1- and/or Ξ²-adrenoceptor activation. The effects of morphine dependence and withdrawal on CREB phosphorylation (pCREB), phosphorylated TORC1 (pTORC1), and HPA axis response were measured by Western-blot, immunohistochemistry and radioimmunoassay in rats pretreated with prazosin (Ξ±1-adrenoceptor antagonist) or propranolol (Ξ²-adrenoceptor antagonist). In addition, the effects of morphine withdrawal on MHPG (the main NA metabolite at the central nervous system) and NA content and turnover were evaluated by HPLC. We found an increase in MHPG and NA turnover in morphine-withdrawn rats, which were accompanied by increased pCREB immunoreactivity and plasma corticosterone concentrations. Levels of the inactive form of TORC1 (pTORC1) were decreased during withdrawal. Prazosin but not propranolol blocked the rise in pCREB level and the decrease in pTORC1 immunoreactivity. In addition, the HPA axis response to morphine withdrawal was attenuated in prazosin-pretreated rats. Present results suggest that, during acute morphine withdrawal, NA may control the HPA axis activity through CREB activation at the PVN level. We concluded that the combined increase in CREB phosphorylation and decrease in pTORC1 levels might represent, in part, two of the mechanisms of CREB activation at the PVN during morphine withdrawal
Dengue Virus Infection of Aedes aegypti Requires a Putative Cysteine Rich Venom Protein
Citation: Londono-Renteria, B., Troupin, A., Conway, M. J., Vesely, D., Ledizet, M., Roundy, C. M., . . . Colpitts, T. M. (2015). Dengue Virus Infection of Aedes aegypti Requires a Putative Cysteine Rich Venom Protein. Plos Pathogens, 11(10), 23. doi:10.1371/journal.ppat.1005202Dengue virus (DENV) is a mosquito-borne flavivirus that causes serious human disease and mortality worldwide. There is no specific antiviral therapy or vaccine for DENV infection. Alterations in gene expression during DENV infection of the mosquito and the impact of these changes on virus infection are important events to investigate in hopes of creating new treatments and vaccines. We previously identified 203 genes that were >= 5-fold differentially upregulated during flavivirus infection of the mosquito. Here, we examined the impact of silencing 100 of the most highly upregulated gene targets on DENV infection in its mosquito vector. We identified 20 genes that reduced DENV infection by at least 60% when silenced. We focused on one gene, a putative cysteine rich venom protein (SeqID AAEL000379; CRVP379), whose silencing significantly reduced DENV infection in Aedes aegypti cells. Here, we examine the requirement for CRVP379 during DENV infection of the mosquito and investigate the mechanisms surrounding this phenomenon. We also show that blocking CRVP379 protein with either RNAi or specific antisera inhibits DENV infection in Aedes aegypti. This work identifies a novel mosquito gene target for controlling DENV infection in mosquitoes that may also be used to develop broad preventative and therapeutic measures for multiple flaviviruses
Tai Chi for osteopenic women: design and rationale of a pragmatic randomized controlled trial
<p>Abstract</p> <p>Background</p> <p>Post-menopausal osteopenic women are at increased risk for skeletal fractures. Current osteopenia treatment guidelines include exercise, however, optimal exercise regimens for attenuating bone mineral density (BMD) loss, or for addressing other fracture-related risk factors (e.g. poor balance, decreased muscle strength) are not well-defined. Tai Chi is an increasingly popular weight bearing mind-body exercise that has been reported to positively impact BMD dynamics and improve postural control, however, current evidence is inconclusive. This study will determine the effectiveness of Tai Chi in reducing rates of bone turnover in post-menopausal osteopenic women, compared with standard care, and will preliminarily explore biomechanical processes that might inform how Tai Chi impacts BMD and associated fracture risks.</p> <p>Methods/Design</p> <p>A total of 86 post-menopausal women, aged 45-70y, T-score of the hip and/or spine -1.0 and -2.5, have been recruited from primary care clinics of a large healthcare system based in Boston. They have been randomized to a group-based 9-month Tai Chi program plus standard care or to standard care only. A unique aspect of this trial is its pragmatic design, which allows participants randomized to Tai Chi to choose from a pre-screened list of community-based Tai Chi programs. Interviewers masked to participants' treatment group assess outcomes at baseline and 3 and 9 months after randomization. Primary outcomes are serum markers of bone resorption (C-terminal cross linking telopeptide of type I collagen), bone formation (osteocalcin), and BMD of the lumbar spine and proximal femur (dual-energy X-ray absorptiometry). Secondary outcomes include health-related quality-of-life, exercise behavior, and psychological well-being. In addition, kinetic and kinematic characterization of gait, standing, and rising from a chair are assessed in subset of participants (n = 16) to explore the feasibility of modeling skeletal mechanical loads and postural control as mediators of fracture risk.</p> <p>Discussion</p> <p>Results of this study will provide preliminary evidence regarding the value of Tai Chi as an intervention for decreasing fracture risk in osteopenic women. They will also inform the feasibility, value and potential limitations related to the use of pragmatic designs for the study of Tai Chi and related mind-body exercise. If the results are positive, this will help focus future, more in-depth, research on the most promising potential mechanisms of action identified by this study.</p> <p>Trial registration</p> <p>This trial is registered in Clinical Trials.gov, with the ID number of NCT01039012.</p
Dysregulation of Mitochondrial Dynamics and the Muscle Transcriptome in ICU Patients Suffering from Sepsis Induced Multiple Organ Failure
BACKGROUND: Septic patients treated in the intensive care unit (ICU) often develop multiple organ failure including persistent skeletal muscle dysfunction which results in the patient's protracted recovery process. We have demonstrated that muscle mitochondrial enzyme activities are impaired in septic ICU patients impairing cellular energy balance, which will interfere with muscle function and metabolism. Here we use detailed phenotyping and genomics to elucidate mechanisms leading to these impairments and the molecular consequences. METHODOLOGY/PRINCIPAL FINDINGS: Utilising biopsy material from seventeen patients and ten age-matched controls we demonstrate that neither mitochondrial in vivo protein synthesis nor expression of mitochondrial genes are compromised. Indeed, there was partial activation of the mitochondrial biogenesis pathway involving NRF2alpha/GABP and its target genes TFAM, TFB1M and TFB2M yet clearly this failed to maintain mitochondrial function. We therefore utilised transcript profiling and pathway analysis of ICU patient skeletal muscle to generate insight into the molecular defects driving loss of muscle function and metabolic homeostasis. Gene ontology analysis of Affymetrix analysis demonstrated substantial loss of muscle specific genes, a global oxidative stress response related to most probably cytokine signalling, altered insulin related signalling and a substantial overlap between patients and muscle wasting/inflammatory animal models. MicroRNA 21 processing appeared defective suggesting that post-transcriptional protein synthesis regulation is altered by disruption of tissue microRNA expression. Finally, we were able to demonstrate that the phenotype of skeletal muscle in ICU patients is not merely one of inactivity, it appears to be an actively remodelling tissue, influenced by several mediators, all of which may be open to manipulation with the aim to improve clinical outcome. CONCLUSIONS/SIGNIFICANCE: This first combined protein and transcriptome based analysis of human skeletal muscle obtained from septic patients demonstrated that losses of mitochondria and muscle mass are accompanied by sustained protein synthesis (anabolic process) while dysregulation of transcription programmes appears to fail to compensate for increased damage and proteolysis. Our analysis identified both validated and novel clinically tractable targets to manipulate these failing processes and pursuit of these could lead to new potential treatments
Impact of Tai Chi exercise on multiple fracture-related risk factors in post-menopausal osteopenic women: a pilot pragmatic, randomized trial
Background: Tai Chi (TC) is a mind-body exercise that shows potential as an effective and safe intervention for preventing fall-related fractures in the elderly. Few randomized trials have simultaneously evaluated TC's potential to reduce bone loss and improve fall-predictive balance parameters in osteopenic women. Methods: In a pragmatic randomized trial, 86 post-menopausal osteopenic women, aged 45-70, were recruited from community clinics. Women were assigned to either nine months of TC training plus usual care (UC) vs. UC alone. Primary outcomes were changes between baseline and nine months of bone mineral density (BMD) of the proximal femur and lumbar spine (dual-energy X-ray absorptiometry) and serum markers of bone resorption and formation. Secondary outcomes included quality of life. In a subsample (n = 16), quiet standing fall-predictive sway parameters and clinical balance tests were also assessed. Both intent-to-treat and per-protocol analyses were employed. Results: For BMD, no intent-to-treat analyses were statistically significant; however, per protocol analyses (i.e., only including TC participants who completed 75% training requirements) of femoral neck BMD changes were significantly different between TC and UC (+0.04 vs. -0.98%; P = 0.05). Changes in bone formation markers and physical domains of quality of life were also more favorable in per protocol TC vs. UC (P = 0.05). Changes in sway parameters were significantly improved by TC vs. UC (average sway velocity, P = 0.027; anterior-posterior sway range, P = 0.014). Clinical measures of balance and function showed non-significant trends in favor of TC. Conclusions: TC training offered through existing community-based programs is a safe, feasible, and promising intervention for reducing multiple fracture risks. Our results affirm the value of a more definitive, longer-term trial of TC for osteopenic women, adequately powered to detect clinically relevant effects of TC on attenuation of BMD loss and reduction of fall risk in this population
- β¦