444 research outputs found
Recommended from our members
The parallel programming of landing position in saccadic eye movement sequences
Saccadic eye movements occur in sequences, gathering new information about the visual environment to support successful task completion. Here we examine the control of these saccadic sequences and specifically the extent to which the spatial aspects of the saccadic responses are programmed in parallel. We asked participants to saccade to a series of visual targets and, while they shifted their gaze around the display, we displaced select targets. We found that saccade landing position was deviated towards the previous location of the target suggesting that partial parallel programming of target location information was occurring. The saccade landing position was also affected by the new target location which demonstrates that the saccade landing position was also partially updated following the shift. This pattern was present even for targets that were the subject of the next fixation. Having a greater preview about the sequence path influenced saccade accuracy with saccades being less affected by relocations when there is less preview information. The results demonstrate that landing positions from a saccade sequence are programmed in parallel and combined with more immediate visual signals
Anisotropic Small-Polaron Hopping In W:Bivo4 Single Crystals
DC electrical conductivity, Seebeck and Hall coefficients are measured between 300 and 450 K on single crystals of monoclinic bismuth vanadate that are doped n-type with 0.3% tungsten donors (W:BiVO4). Strongly activated small-polaron hopping is implied by the activation energies of the Arrhenius conductivities (about 300 meV) greatly exceeding the energies characterizing the falls of the Seebeck coefficients' magnitudes with increasing temperature (about 50 meV). Small-polaron hopping is further evidenced by the measured Hall mobility in the ab-plane (10(-1) cm(2) V-1 s(-1) at 300 K) being larger and much less strongly activated than the deduced drift mobility (about 5 x 10(-5) cm(2) V-1 s(-1) at 300 K). The conductivity and n-type Seebeck coefficient is found to be anisotropic with the conductivity larger and the Seebeck coefficient's magnitude smaller and less temperature dependent for motion within the ab-plane than that in the c-direction. These anisotropies are addressed by considering highly anisotropic next-nearest-neighbor (approximate to 5 angstrom) transfers in addition to the somewhat shorter (approximate to 4 angstrom), nearly isotropic nearest-neighbor transfers. (C) 2015 AIP Publishing LLC.U.S. Department of Energy (DOE), DE-FG02-09ER16119Welch Foundation Grant F-1436Hemphill-Gilmore Endowed FellowshipNSF MIRT DMR 1122603Chemical EngineeringTexas Materials InstituteChemistr
Short-term weather patterns influence avian body condition during the breeding season
Despite a large body of literature investigating the effects of long-term climate trends on birds, the effects of short-term weather on individual body condition are less established. Poor body condition is associated with declines in individual fitness for many avian species, thus changes to body condition may result in altered population productivity. We utilized a large existing dataset from the Monitoring Avian Productivity and Survivorship program to analyze the effects of daily maximum temperature, daily minimum temperature, and monthly precipitation on avian body condition over a 15-year period across 79 sampling sites in the southeastern United States. We used a model selection approach with generalized additive models at both species and guild levels and found largely nonlinear responses of avian body condition to weather variables. For many species and guilds, a threshold effect was evident, after which the relationship between body condition and weather changed drastically. As extreme weather becomes more common under climate change, species will be pushed further towards or away from these thresholds. Non-linear effects were also highly species-specific and not easily explained by expected effects on food availability. Thus, avian responses to altered weather may be difficult to predict across species. We discuss the implications of these results for individual fitness and population productivity
Cu 2+ and Cu 3+ Acceptors in β-Ga 2 O 3 Crystals: A Magnetic Resonance and Optical Absorption Study
Electron paramagnetic resonance (EPR) and optical absorption are used to characterize Cu2+ (3d9) and Cu3+ (3d8) ions in Cu-doped β-Ga2O3. These Cu ions are singly ionized acceptors and neutral acceptors, respectively (in semiconductor notation, they are Cu− and Cu0 acceptors). Two distinct Cu2+ EPR spectra are observed in the as-grown crystals. We refer to them as Cu2+(A) and Cu2+(B). Spin-Hamiltonian parameters (a g matrix and a 63,65Cu hyperfine matrix) are obtained from the angular dependence of each spectrum. Additional electron-nuclear double resonance (ENDOR) experiments on Cu2+(A) ions give refined 63Cu and 65Cu hyperfine matrices and provide information about the nuclear electric quadrupole interactions. Our EPR results show that the Cu2+(A) ions occupy octahedral Ga sites with no nearby defect. The Cu2+(B) ions, also at octahedral Ga sites, have an adjacent defect, possibly an OH− ion, an oxygen vacancy, or an H− ion trapped within an oxygen vacancy. Exposing the crystals at room temperature to 275 nm light produces Cu3+ ions and reduces the number of Cu2+(A) and Cu2+(B) ions. The Cu3+ ions have an S = 1 EPR spectrum and are responsible for broad optical absorption bands peaking near 365, 422, 486, 599, and 696 nm. An analysis of loops observed in the Cu3+ EPR angular dependence gives 2.086 for the g value and 22.18, 3.31, and −25.49 GHz for the principal values of D (the fine-structure matrix). Thermal anneal studies above room temperature show that the Cu3+ ions decay and the Cu2+ ions recover between 75 and 375 °C
Recommended from our members
The programming of sequences of saccades
Saccadic eye movements move the high-resolution fovea to point at regions of interest. Saccades can only be generated serially (i.e., one at a time). However, what remains unclear is the extent to which saccades are programmed in parallel (i.e., a series of such moments can be planned together) and how far ahead such planning occurs. In the current experiment, we investigate this issue with a saccade contingent preview paradigm. Participants were asked to execute saccadic eye movements in response to seven small circles presented on a screen. The extent to which participants were given prior information about target locations was varied on a trial-by-trial basis: participants were aware of the location of the next target only, the next three, five, or all seven targets. The addition of new targets to the display was made during the saccade to the next target in the sequence. The overall time taken to complete the sequence was decreased as more targets were available up to all seven targets. This was a result of a reduction in the number of saccades being executed and a reduction in their saccade latencies. Surprisingly, these results suggest that, when faced with a demand to saccade to a large number of target locations, saccade preparation about all target locations is carried out in paralle
Planning engagement with web resources to improve diet quality and break up sedentary time for home-working employees: a mixed methods study.
As home working becomes more common, employers may struggle to provide health promotion interventions that can successfully bridge the gap between employees' intentions to engage in healthier behaviors and actual action. Based on past evidence that action planning can successfully encourage the adoption of healthier behaviors, this mixed-methods study of a web-based self-help intervention incorporated a randomized planning trial that included quantitative measures of engagement and follow-up qualitative interviews with a subsample of participants. Participants either (a) selected a movement plan for incorporating a series of 2-min exercise videos into their work week to break up sedentary time and a balanced meal plan with recipe cards for a week's lunches and dinners or (b) received access to these resources without a plan. Selecting a movement plan was more effective at increasing engagement with the web resources compared to the no-plan condition. In the follow-up interviews, participants indicated that the plan helped to remind participants to engage with the resources and made it simpler for them to follow the guidance for exercises and meals. Ease of use and being able to fit exercises and meals around work tasks were key factors that facilitated uptake of the resources, while lack of time and worries about how colleagues would perceive them taking breaks to use the resources were barriers to uptake. Participants' self-efficacy was associated with general resource use but not plan adherence. Overall, including plans with online self-help resources could enhance their uptake. (PsycInfo Database Record (c) 2023 APA, all rights reserved)
MASTL overexpression promotes chromosome instability and metastasis in breast cancer.
MASTL kinase is essential for correct progression through mitosis, with loss of MASTL causing chromosome segregation errors, mitotic collapse and failure of cytokinesis. However, in cancer MASTL is most commonly amplified and overexpressed. This correlates with increased chromosome instability in breast cancer and poor patient survival in breast, ovarian and lung cancer. Global phosphoproteomic analysis of immortalised breast MCF10A cells engineered to overexpressed MASTL revealed disruption to desmosomes, actin cytoskeleton, PI3K/AKT/mTOR and p38 stress kinase signalling pathways. Notably, these pathways were also disrupted in patient samples that overexpress MASTL. In MCF10A cells, these alterations corresponded with a loss of contact inhibition and partial epithelial-mesenchymal transition, which disrupted migration and allowed cells to proliferate uncontrollably in 3D culture. Furthermore, MASTL overexpression increased aberrant mitotic divisions resulting in increased micronuclei formation. Mathematical modelling indicated that this delay was due to continued inhibition of PP2A-B55, which delayed timely mitotic exit. This corresponded with an increase in DNA damage and delayed transit through interphase. There were no significant alterations to replication kinetics upon MASTL overexpression, however, inhibition of p38 kinase rescued the interphase delay, suggesting the delay was a G2 DNA damage checkpoint response. Importantly, knockdown of MASTL, reduced cell proliferation, prevented invasion and metastasis of MDA-MB-231 breast cancer cells both in vitro and in vivo, indicating the potential of future therapies that target MASTL. Taken together, these results suggest that MASTL overexpression contributes to chromosome instability and metastasis, thereby decreasing breast cancer patient survival
Compositional Dependence of Solubility/Retention of Molybdenum Oxides in Aluminoborosilicate-Based Model Nuclear Waste Glasses
Molybdenum oxides are an integral component of the high-level waste streams being generated from the nuclear reactors in several countries. Although borosilicate glass has been chosen as the baseline waste form by most of the countries to immobilize these waste streams, molybdate oxyanions (MoO42–) exhibit very low solubility (∼1 mol %) in these glass matrices. In the past three to four decades, several studies describing the compositional and structural dependence of molybdate anions in borosilicate and aluminoborosilicate glasses have been reported in the literature, providing a basis for our understanding of fundamental science that governs the solubility and retention of these species in the nuclear waste glasses. However, there are still several open questions that need to be answered to gain an in-depth understanding of the mechanisms that control the solubility and retention of these oxyanions in glassy waste forms. This article is focused on finding answers to two such questions: (1) What are the solubility and retention limits of MoO3 in aluminoborosilicate glasses as a function of chemical composition? (2) Why is there a considerable increase in the solubility of MoO3 with incorporation of rare-earth oxides (for example, Nd2O3) in aluminoborosilicate glasses? Accordingly, three different series of aluminoborosilicate glasses (compositional complexity being added in a tiered approach) with varying MoO3 concentrations have been synthesized and characterized for their ability to accommodate molybdate ions in their structure (solubility) and as a glass-ceramic (retention). The contradictory viewpoints (between different research groups) pertaining to the impact of rare-earth cations on the structure of aluminoborosilicate glasses are discussed, and their implications on the solubility of MoO3 in these glasses are evaluated. A novel hypothesis explaining the mechanism governing the solubility of MoO3 in rare-earth containing aluminoborosilicate glasses has been proposed
- …