149 research outputs found
Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li-O battery capacity
Among the 'beyond Li-ion' battery chemistries, nonaqueous Li-O batteries
have the highest theoretical specific energy and as a result have attracted
significant research attention over the past decade. A critical scientific
challenge facing nonaqueous Li-O batteries is the electronically insulating
nature of the primary discharge product, lithium peroxide, which passivates the
battery cathode as it is formed, leading to low ultimate cell capacities.
Recently, strategies to enhance solubility to circumvent this issue have been
reported, but rely upon electrolyte formulations that further decrease the
overall electrochemical stability of the system, thereby deleteriously
affecting battery rechargeability. In this study, we report that a significant
enhancement (greater than four-fold) in Li-O cell capacity is possible by
appropriately selecting the salt anion in the electrolyte solution. Using
Li nuclear magnetic resonance and modeling, we confirm that this
improvement is a result of enhanced Li stability in solution, which in turn
induces solubility of the intermediate to LiO formation. Using this
strategy, the challenging task of identifying an electrolyte solvent that
possesses the anti-correlated properties of high intermediate solubility and
solvent stability is alleviated, potentially providing a pathway to develop an
electrolyte that affords both high capacity and rechargeability. We believe the
model and strategy presented here will be generally useful to enhance Coulombic
efficiency in many electrochemical systems (e.g. Li-S batteries) where
improving intermediate stability in solution could induce desired mechanisms of
product formation.Comment: 22 pages, 5 figures and Supporting Informatio
Recommended from our members
Important Considerations in Plasmon-Enhanced Electrochemical Conversion at Voltage-Biased Electrodes.
In this perspective we compare plasmon-enhanced electrochemical conversion (PEEC) with photoelectrochemistry (PEC). PEEC is the oxidation or reduction of a reactant at the illuminated surface of a plasmonic metal (or other conductive material) while a potential bias is applied. PEC uses solar light to generate photoexcited electron-hole pairs to drive an electrochemical reaction at a biased or unbiased semiconductor photoelectrode. The mechanism of photoexcitation of charge carriers is different between PEEC and PEC. Here we explore how this difference affects the response of PEEC and PEC systems to changes in light, temperature, and surface morphology of the photoelectrode
In Situ ATR-SEIRAS of Carbon Dioxide Reduction at a Plasmonic Silver Cathode.
Illumination of a voltage-biased plasmonic Ag cathode during CO2 reduction results in a suppression of the H2 evolution reaction while enhancing CO2 reduction. This effect has been shown to be photonic rather than thermal, but the exact plasmonic mechanism is unknown. Here, we conduct an in situ ATR-SEIRAS (attenuated total reflectance-surface-enhanced infrared absorption spectroscopy) study of a sputtered thin film Ag cathode on a Ge ATR crystal in CO2-saturated 0.1 M KHCO3 over a range of potentials under both dark and illuminated (365 nm, 125 mW cm-2) conditions to elucidate the nature of this plasmonic enhancement. We find that the onset potential of CO2 reduction to adsorbed CO on the Ag surface is -0.25 VRHE and is identical in the light and the dark. As the production of gaseous CO is detected in the light near this onset potential but is not observed in the dark until -0.5 VRHE, we conclude that the light must be assisting the desorption of CO from the surface. Furthermore, the HCO3- wavenumber and peak area increase immediately upon illumination, precluding a thermal effect. We propose that the enhanced local electric field that results from the localized surface plasmon resonance (LSPR) is strengthening the HCO3- bond, further increasing the local pH. This would account for the decrease in H2 formation and increase the CO2 reduction products in the light
Recommended from our members
Process of forming crosslinked copolymer film, crosslinked copolymer film formed thereby, and water purification membrane
Azidoaryl-substituted cyclooctene monomers and synthesized and used in the preparation of various copolymers. Among these copolymers are those prepared from ring-opening metathesis polymerization of cyclooctene, polyethylene glycol-substituted cyclooctene, and azidoaryl-substituted cyclooctene. These copolymers are useful in the formation of crosslinked films that reduce fouling of water purification membranes.Board of Regents, University of Texas Syste
Ion Transport and the True Transference Number in Nonaqueous Polyelectrolyte Solutions for Lithium Ion Batteries.
Nonaqueous polyelectrolyte solutions have been recently proposed as high Li+ transference number electrolytes for lithium ion batteries. However, the atomistic phenomena governing ion diffusion and migration in polyelectrolytes are poorly understood, particularly in nonaqueous solvents. Here, the structural and transport properties of a model polyelectrolyte solution, poly(allyl glycidyl ether-lithium sulfonate) in dimethyl sulfoxide, are studied using all-atom molecular dynamics simulations. We find that the static structural analysis of Li+ ion pairing is insufficient to fully explain the overall conductivity trend, necessitating a dynamic analysis of the diffusion mechanism, in which we observe a shift from largely vehicular transport to more structural diffusion as the Li+ concentration increases. Furthermore, we demonstrate that despite the significantly higher diffusion coefficient of the lithium ion, the negatively charged polyion is responsible for the majority of the solution conductivity at all concentrations, corresponding to Li+ transference numbers much lower than previously estimated experimentally. We quantify the ion-ion correlations unique to polyelectrolyte systems that are responsible for this surprising behavior. These results highlight the need to reconsider the approximations typically made for transport in polyelectrolyte solutions
Recommended from our members
How Bulk Sensitive is Hard X-ray Photoelectron Spectroscopy: Accounting for the Cathode-Electrolyte Interface when Addressing Oxygen Redox.
Sensitivity to the "bulk" oxygen core orbital makes hard X-ray photoelectron spectroscopy (HAXPES) an appealing technique for studying oxygen redox candidates. Various studies have reported an additional O 1s peak (530-531 eV) at high voltages, which has been considered a direct signature of the bulk oxygen redox process. Here, we find the emergence of a 530.4 eV O 1s HAXPES peak for three model cathodes-Li2MnO3, Li-rich NMC, and NMC 442-that shows no clear link to oxygen redox. Instead, the 530.4 eV peak for these three systems is attributed to transition metal reduction and electrolyte decomposition in the near-surface region. Claims of oxygen redox relying on photoelectron spectroscopy must explicitly account for the surface sensitivity of this technique and the extent of the cathode degradation layer
- …