Technical University of Denmark

Impedance perspectives on Li-air battery overpotentials

Højberg, Jonathan; McCloskey, Bryan D. ; Luntz, Alan C. ; Hjelm, Johan; Johansen, Keld; Norby, Poul; Vegge, Tejs

Publication date: 2014

Link back to DTU Orbit

Citation (APA):

Højberg, J., McCloskey, B. D., Luntz, A. C., Hjelm, J., Johansen, K., Norby, P., & Vegge, T. (2014). Impedance perspectives on Li-air battery overpotentials. Abstract from Nordisk Batterikonferens 2013 (NORDBATT), Uppsala, Sweden.

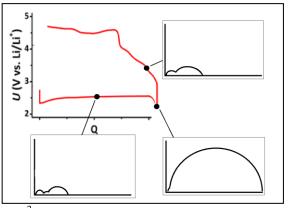
DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal


If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

IMPEDANCE PERSPECTIVES ON LI-AIR BATTERY OVERPOTENTIALS

Jonathan Højberg^{1,2}, Bryan D. McCloskey³, Alan C. Luntz^{3,4}, Johan Hjelm¹, Keld Johansen², Poul Norby¹, Tejs Vegge¹

 ¹DTU Energy Conversion, Frederiksborgvej 399, DK-4000 Roskilde, Denmark, jonn@dtu.dk.
²Haldor Topsøe A/S, Nymøllevej 55, DK-2800 Kgs. Lyngby, Denmark, ³IBM Almaden Research Center, San Jose, California 95120, United States, ⁴SUNCAT, SLAC National Accelerator Laboratory, Menlo Park, California 94025

Lithium-air batteries have attracted much attention in recent years because of a potentially high specific energy density and experiments with flat electrodes show that the intrinsic electrochemistry of Lithium-air batteries has a very low overpotential¹. In real batteries with a porous electrode, the observed overpotentials are, however, significantly larger². The origin of the overpotentials at especially sudden death and during charge has been heavily debated in the literature. Among others, arguments proposed are

based on modeling¹, DEMS measurements², in-situ TEM³, and conductivity measurements using a redox-mediator combined with ex-situ characterization methods like FTIR and Raman⁴.

In this presentation, a series of electrochemical impedance spectra measured at different states of charge and current densities will be used to analyze three states of the Lithium-air battery electrochemistry; The discharge plateau, sudden death and the initial stage of the charging process.

By combining the measurements with previous results presented by Bryan D. McCloskey and Alan C. Luntz et *al.* (ref. 1, 2 and 5 among others), the internal resistance in the battery is related to the measured overpotential. This relation is essential to understand the reactions inside the battery.

References:

- [1] Viswanathan et al., JPCL 2013, 4, 556-560
- [2] McCloskey et al., JPCL 2013, 4, 2989-2993
- [3] Shao-Horn et al., Nano letters 2013, 13, 2209–2214
- [4] Bruce et al., Nature chemistry **2013**, *5*, 489-494
- [5] Luntz et al., JPCL 2013, 4, 3494-3499