73 research outputs found

    EPR identification of defects responsible for thermoluminescence in Cu-doped lithium tetraborate (Li2B4O7) crystals

    Get PDF
    Electron paramagnetic resonance (EPR) is used to identify the electron and hole traps responsible for thermoluminescence (TL) peaks occurring near 100 and 200 â—¦C in copper-doped lithium tetraborate (Li2B4O7) crystals. As-grown crystals have Cu+ and Cu2+ ions substituting for lithium and have Cu+ ions at interstitial sites. All of the substitutional Cu2+ ions in the as-grown crystals have an adjacent lithium vacancy and give rise to a distinct EPR spectrum. Exposure to ionizing radiation at room temperature produces a second and different Cu2+ EPR spectrum when a hole is trapped by substitutional Cu+ ions that have no nearby defects. These two Cu2+ trapped-hole centers are referred to as Cu2+-VLi and Cu2+active, respectively. Also during the irradiation, two trapped-electron centers in the form of interstitial Cu0 atoms are produced when interstitial Cu+ ions trap electrons. They are observed with EPR and are labeled Cu0A and Cu0B. When an irradiated crystal is warmed from 25 to 150 â—¦C, the Cu2+active centers have a partial decay step that correlates with the TL peak near 100 â—¦C. The concentrations of Cu0A and Cu0B centers, however, increase as the crystal is heated through this range. As the crystal is futher warmed between 150 and 250 â—¦C, the EPR signals from the Cu2+active hole centers and Cu0A and Cu0B electron centers decay simultaneously. This decay step correlates with the intense TL peak near 200 â—¦C

    The unoccupied electronic structure characterization of hydrothermally grown ThO\u3csub\u3e2\u3c/sub\u3e single crystals

    Get PDF
    Single crystals of thorium dioxide ThO2, grown by the hydrothermal growth technique, have been investigated by ultraviolet photoemission spectroscopy (UPS), inverse photoemission spectroscopy (IPES), and L3, M3, M4, and M5 X-ray absorption near edge spectroscopy (XANES). The experimental band gap for large single crystals has been determined to be 6 eV to 7 eV, from UPS and IPES, in line with expectations. The combined UPS and IPES, place the Fermi level near the conduction band minimum, making these crystals n-type, with extensive band tailing, suggesting an optical gap in the region of 4.8 eV for excitations from occupied to unoccupied edge states. Hybridization between the Th 6d/5f bands with O 2p is strongly implicated

    The effective surface Debye temperature of Yb:GaN

    Get PDF
    The effective Debye temperature of ytterbium and gallium in Yb:GaN thin films has been obtained using X-ray photoemission spectroscopy. The vibrational motion normal to the surface results in a dimunition of photoemission intensities from which we have estimated the effective Debye temperatures of 221±30 K and 308±30 K for Yb and Ga, respectively. The difference between the measured values for Yb and Ga suggests that the Debye temperatures are influenced by the local environment. The smaller effective surface Debye temperature for Yb correlates to a soft, strained surface, possibly due to an increased Yb―N bond length as compared to the Ga―N bond length

    Schottky barrier formation at the Au to rare earth doped GaN thin film interface

    Get PDF
    The Schottky barriers formed at the interface between gold and various rare earth doped GaN thin films (RE = Yb, Er, Gd) were investigated in situ using synchrotron photoemission spectroscopy. The resultant Schottky barrier heights were measured as 1.68 ± 0.1 eV (Yb:GaN), 1.64 ± 0.1 eV (Er:GaN), and 1.33 ± 0.1 eV (Gd:GaN). We find compelling evidence that thin layers of gold do not wet and uniformly cover the GaN surface, even with rare earth doping of the GaN. Furthermore, the trend of the Schottky barrier heights follows the trend of the rare earth metal work function

    New transitions and feeding of the J\u3csup\u3eπ\u3c/sup\u3e=(8\u3csup\u3e+\u3c/sup\u3e) isomer in \u3csup\u3e186\u3c/sup\u3eRe

    Get PDF
    The spallation neutron source at the Los Alamos Neutron Science Center Weapons Neutron Research facility was used to populate excited states in 186Re via (n,2nγ) reactions on an enriched 187Re target. Gamma rays were detected with the GErmanium Array for Neutron Induced Excitations spectrometer, a Compton-suppressed array of 18 HPGe detectors. Incident neutron energies were determined by the time-of-flight technique and used to obtain γ-ray excitation functions for the purpose of identifying γ rays by reaction channel. Analysis of the singles γ-ray spectrum gated on the neutron energy range 10≤En≤25MeV resulted in five transitions and one level added to the 186Re level scheme. The additions include the placement of three γ rays at 266.7, 381.2, and 647.7 keV which have been identified as feeding the 2.0×105yr, Jπ=(8+) isomer and yield an improved value of 148.2(5)keV for the isomer energy. These transitions may have astrophysical implications related to the use of the Re-Os cosmochronometer. Abstract © APS

    EPR identification of defects responsible for thermoluminescence in Cu-doped lithium tetraborate (Li2B4O7) crystals

    Get PDF
    Electron paramagnetic resonance (EPR) is used to identify the electron and hole traps responsible for thermoluminescence (TL) peaks occurring near 100 and 200 â—¦C in copper-doped lithium tetraborate (Li2B4O7) crystals. As-grown crystals have Cu+ and Cu2+ ions substituting for lithium and have Cu+ ions at interstitial sites. All of the substitutional Cu2+ ions in the as-grown crystals have an adjacent lithium vacancy and give rise to a distinct EPR spectrum. Exposure to ionizing radiation at room temperature produces a second and different Cu2+ EPR spectrum when a hole is trapped by substitutional Cu+ ions that have no nearby defects. These two Cu2+ trapped-hole centers are referred to as Cu2+-VLi and Cu2+active, respectively. Also during the irradiation, two trapped-electron centers in the form of interstitial Cu0 atoms are produced when interstitial Cu+ ions trap electrons. They are observed with EPR and are labeled Cu0A and Cu0B. When an irradiated crystal is warmed from 25 to 150 â—¦C, the Cu2+active centers have a partial decay step that correlates with the TL peak near 100 â—¦C. The concentrations of Cu0A and Cu0B centers, however, increase as the crystal is heated through this range. As the crystal is futher warmed between 150 and 250 â—¦C, the EPR signals from the Cu2+active hole centers and Cu0A and Cu0B electron centers decay simultaneously. This decay step correlates with the intense TL peak near 200 â—¦C

    Identification of electron and hole traps in lithium tetraborate (Li2B4O7) crystals: Oxygen vacancies and lithium vacancies

    Get PDF
    Electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) are used to identify and characterize electrons trapped by oxygen vacancies and holes trapped by lithium vacancies in lithium tetraborate (Li2B4O7) crystals. Our study includes a crystal with the natural abundances of 10B and 11B and a crystal highly enriched with 10B. The as-grown crystals contain isolated oxygen vacancies, lithium vacancies, and copper impurities, all in nonparamagnetic charge states. During an irradiation at 77 K with 60 kV x-rays, doubly ionized oxygen vacancies trap electrons while singly ionized lithium vacancies and monovalent copper impurities trap holes. The vacancies return to their preirradiation charge states when the temperature of the sample is increased to approximately 90 K. Hyperfine interactions with 10B and 11B nuclei, observed between 13 and 40 K in the radiation-induced EPR and ENDOR spectra, provide models for the two vacancy-related defects. The electron trapped by an oxygen vacancy is localized primarily on only one of the two neighboring boron ions while the hole stabilized by a lithium vacancy is localized on a neighboring oxygen ion with nearly equal interactions with the two boron ions adjacent to the oxygen ion

    The chromium site in doped glassy lithium tetraborate

    Get PDF
    Using extended X-ray absorption fine structure (EXAFS) spectroscopy, we find that Cr substitutes primarily in the LiĂľ site as a dopant in lithium tetraborate Li2B4O7 glasses, in this case 98.4Li2B4O7e1.6Cr2O3 or nominally Li1.98Cr0.025B4O7. This strong preference for a single site is nonetheless accompanied by site distortions and some site disorder, helping explain the optical properties of chromium doped Li2B4O7 glasses. The resulting O coordination shell has a contraction of the Cr-O bond lengths as compared to the Li-O bond lengths. There is also an increase in the O coordination number

    The electronic structure of Li2B4O7(110) and Li2B4O7(100)

    Get PDF
    The band structure of Li2B4O7(100) and Li2B4O7(110) was experimentally determined using a combination of angle-resolved photoemission and angle-resolved inverse photoemission spectroscopies. The experimental band gap depends on crystallographic direction but exceeds 8.8 eV, while the bulk band gap is believed to be in the vicinity of 9.8 eV, in qualitative agreement with expectations. The occupied bulk band structure indicates relatively large values for the hole mass; with the hole mass as significantly larger than that of the electron mass derived from the unoccupied band structure. The Li2B4O7(110) surface is characterized by a very light mass image potential state and a surface state that falls within the band gap of the projected bulk band structure

    The chromium site in doped glassy lithium tetraborate

    Get PDF
    Using extended X-ray absorption fine structure (EXAFS) spectroscopy, we find that Cr substitutes primarily in the LiĂľ site as a dopant in lithium tetraborate Li2B4O7 glasses, in this case 98.4Li2B4O7e1.6Cr2O3 or nominally Li1.98Cr0.025B4O7. This strong preference for a single site is nonetheless accompanied by site distortions and some site disorder, helping explain the optical properties of chromium doped Li2B4O7 glasses. The resulting O coordination shell has a contraction of the Cr-O bond lengths as compared to the Li-O bond lengths. There is also an increase in the O coordination number
    • …
    corecore