23 research outputs found

    Hydrodynamical simulations of merging galaxy clusters: giant dark matter particle colliders, powered by gravity

    Get PDF
    Terrestrial particle accelerators collide charged particles, then watch the trajectory of outgoing debris – but they cannot manipulate dark matter. Fortunately, dark matter is the main component of galaxy clusters, which are continuously pulled together by gravity. We show that galaxy cluster mergers can be exploited as enormous, natural dark matter colliders. We analyse hydrodynamical simulations of a universe containing self-interacting dark matter (SIDM) in which all particles interact via gravity, and dark matter particles can also scatter off each other via a massive mediator. During cluster collisions, SIDM spreads out and lags behind cluster member galaxies. Individual systems can have quirky dynamics that makes them difficult to interpret. Statistically, however, we find that the mean or median of dark matter’s spatial offset in many collisions can be robustly modelled, and is independent of our viewing angle and halo mass even in collisions between unequal-mass systems. If the SIDM cross-section were σ/m = 0.1 cm2 g−1 = 0.18 barn GeV−1, the ‘bulleticity’ lag would be ∼5 per cent that of gas due to ram pressure, and could be detected at 95 per cent confidence level in weak lensing observations of ∼100 well-chosen clusters

    Lensing in the Blue. II. Estimating the Sensitivity of Stratospheric Balloons to Weak Gravitational Lensing

    Get PDF
    The Superpressure Balloon-borne Imaging Telescope (SuperBIT) is a diffraction-limited, wide-field, 0.5 m, near-infrared to near-ultraviolet observatory designed to exploit the stratosphere's space-like conditions. SuperBIT's 2023 science flight will deliver deep, blue imaging of galaxy clusters for gravitational lensing analysis. In preparation, we have developed a weak-lensing measurement pipeline with modern algorithms for PSF characterization, shape measurement, and shear calibration. We validate our pipeline and forecast SuperBIT survey properties with simulated galaxy cluster observations in SuperBIT's near-UV and blue bandpasses. We predict imaging depth, galaxy number (source) density, and redshift distribution for observations in SuperBIT's three bluest filters; the effect of lensing sample selections is also considered. We find that, in three hours of on-sky integration, SuperBIT can attain a depth of b = 26 mag and a total source density exceeding 40 galaxies per square arcminute. Even with the application of lensing-analysis catalog selections, we find b-band source densities between 25 and 30 galaxies per square arcminute with a median redshift of z = 1.1. Our analysis confirms SuperBIT's capability for weak gravitational lensing measurements in the blue

    Lensing in the Blue II: Estimating the Sensitivity of Stratospheric Balloons to Weak Gravitational Lensing

    Full text link
    The Superpressure Balloon-borne Imaging Telescope (SuperBIT) is a diffraction-limited, wide-field, 0.5 m, near-infrared to near-ultraviolet observatory designed to exploit the stratosphere's space-like conditions. SuperBIT's 2023 science flight will deliver deep, blue imaging of galaxy clusters for gravitational lensing analysis. In preparation, we have developed a weak lensing measurement pipeline with modern algorithms for PSF characterization, shape measurement, and shear calibration. We validate our pipeline and forecast SuperBIT survey properties with simulated galaxy cluster observations in SuperBIT's near-UV and blue bandpasses. We predict imaging depth, galaxy number (source) density, and redshift distribution for observations in SuperBIT's three bluest filters; the effect of lensing sample selections is also considered. We find that in three hours of on-sky integration, SuperBIT can attain a depth of b = 26 mag and a total source density exceeding 40 galaxies per square arcminute. Even with the application of lensing-analysis catalog selections, we find b-band source densities between 25 and 30 galaxies per square arcminute with a median redshift of z = 1.1. Our analysis confirms SuperBIT's capability for weak gravitational lensing measurements in the blue.Comment: Submitted to Astronomical Journa

    Astro2020 APC White Paper: The Early Career Perspective on the Coming Decade, Astrophysics Career Paths, and the Decadal Survey Process

    Get PDF
    In response to the need for the Astro2020 Decadal Survey to explicitly engage early career astronomers, the National Academies of Sciences, Engineering, and Medicine hosted the Early Career Astronomer and Astrophysicist Focus Session (ECFS) on October 8-9, 2018 under the auspices of Committee of Astronomy and Astrophysics. The meeting was attended by fifty six pre-tenure faculty, research scientists, postdoctoral scholars, and senior graduate students, as well as eight former decadal survey committee members, who acted as facilitators. The event was designed to educate early career astronomers about the decadal survey process, to solicit their feedback on the role that early career astronomers should play in Astro2020, and to provide a forum for the discussion of a wide range of topics regarding the astrophysics career path. This white paper presents highlights and themes that emerged during two days of discussion. In Section 1, we discuss concerns that emerged regarding the coming decade and the astrophysics career path, as well as specific recommendations from participants regarding how to address them. We have organized these concerns and suggestions into five broad themes. These include (sequentially): (1) adequately training astronomers in the statistical and computational techniques necessary in an era of "big data", (2) responses to the growth of collaborations and telescopes, (3) concerns about the adequacy of graduate and postdoctoral training, (4) the need for improvements in equity and inclusion in astronomy, and (5) smoothing and facilitating transitions between early career stages. Section 2 is focused on ideas regarding the decadal survey itself, including: incorporating early career voices, ensuring diverse input from a variety of stakeholders, and successfully and broadly disseminating the results of the survey

    Auto-tuned thermal control on stratospheric balloon experiments

    Get PDF
    Balloon-borne experiments present unique thermal design challenges, which are a combination of those present for both space and ground experiments. Radiation and conduction are the predominant heat transfer mechanisms with convection effects being minimal and difficult to characterize at 35-40 km. This greatly constrains the thermal design options and makes predicting flight thermal behaviour very difficult. Due to the limited power available on long duration balloon flights, efficient heater control is an important factor in minimizing power consumption. SuperBIT, or the Super-Pressure Balloon-borne Imaging Telescope, aims to study weak gravitational lensing using a 0.5m modified Dall-Kirkham telescope capable of achieving 0.02" stability and capturing deep exposures from visible to near UV wavelengths. To achieve the theoretical stratospheric diffraction-limited resolution of 0.25", mirror deformation gradients must be kept to within 20 nm. The thermal environment must be stable on time scales of an hour and the thermal gradients on the telescope must be minimized. During its 2018 test-flight, SuperBIT will implement two types of thermal parameter solvers: one for post-flight characterization and one for in-flight control. The payload has 85 thermistors as well as pyranometers and far-infrared sensors which will be used post-flight to further understand heat transfer in the stratosphere. This document describes the in-flight thermal control method, which predicts the thermal circuit of components and then auto-tunes the heater PID gains. Preliminary ground testing shows the ability to control the components to within 0.01 K

    Automated tumor analysis for molecular profiling in lung cancer

    Get PDF
    The discovery and clinical application of molecular biomarkers in solid tumors, increasingly relies on nucleic acid extraction from FFPE tissue sections and subsequent molecular profiling. This in turn requires the pathological review of haematoxylin & eosin (H&E) stained slides, to ensure sample quality, tumor DNA sufficiency by visually estimating the percentage tumor nuclei and tumor annotation for manual macrodissection. In this study on NSCLC, we demonstrate considerable variation in tumor nuclei percentage between pathologists, potentially undermining the precision of NSCLC molecular evaluation and emphasising the need for quantitative tumor evaluation. We subsequently describe the development and validation of a system called TissueMark for automated tumor annotation and percentage tumor nuclei measurement in NSCLC using computerized image analysis. Evaluation of 245 NSCLC slides showed precise automated tumor annotation of cases using Tissuemark, strong concordance with manually drawn boundaries and identical EGFR mutational status, following manual macrodissection from the image analysis generated tumor boundaries. Automated analysis of cell counts for % tumor measurements by Tissuemark showed reduced variability and significant correlation (p < 0.001) with benchmark tumor cell counts. This study demonstrates a robust image analysis technology that can facilitate the automated quantitative analysis of tissue samples for molecular profiling in discovery and diagnostics
    corecore