41 research outputs found

    Multi-lepton signals from the top-prime quark at the LHC

    Full text link
    We analyze the collider signatures of models with a vector-like top-prime quark and a massive color-octet boson. The top-prime quark mixes with the top quark in the Standard Model, leading to richer final states than ones that are investigated by experimental collaborations. We discuss the multi-lepton final states, and show that they can provide increased sensitivity to models with a top-prime quark and gluon-prime. Searches for new physics in high multiplicity events are an important component of the LHC program and complementary to analyses that have been performed.Comment: 7 pages, 4 figures, 2 table

    TeV physics and the Planck scale

    Get PDF
    Supersymmetry is one of the best motivated possibilities for new physics at the TeV scale. However, both concrete string constructions and phenomenological considerations suggest the possibility that the physics at the TeV scale could be more complicated than the Minimal Supersymmetric Standard Model (MSSM), e.g., due to extended gauge symmetries, new vector-like supermultiplets with non-standard SU(2)xU(1) assignments, and extended Higgs sectors. We briefly comment on some of these possibilities, and discuss in more detail the class of extensions of the MSSM involving an additional standard model singlet field. The latter provides a solution to the Ό\mu problem, and allows significant modifications of the MSSM in the Higgs and neutralino sectors, with important consequences for collider physics, cold dark matter, and electroweak baryogenesis.Comment: 17 pages, 5 figures. To appear in New Journal of Physic

    Sports coaching and the law of negligence: implications for coaching practice

    Get PDF
    The ordinary principles of the law of negligence are applicable in the context of sport, including claims brought against volunteer and professional coaches. Adopting the perspective of the coach, this article intends to raise awareness of the emerging intersection between the law of negligence and sports coaching, by utilising an interdisciplinary analysis designed to better safeguard and reassure coaches mindful of legal liability. Detailed scrutiny of two cases concerning alleged negligent coaching, with complementary discussion of some of the ethical dilemmas facing modern coaches, reinforces the legal duty and obligation of all coaches to adopt objectively reasonable and justifiable coaching practices when interacting with athletes. Problematically, since research suggests that some coaching practice may be underpinned by ‘entrenched legitimacy’ and ‘uncritical inertia’, it is argued that coach education and training should place a greater emphasis on developing a coach’s awareness and understanding of the evolving legal context in which they discharge the duty of care incumbent upon them

    Methods for classically simulating noisy networked quantum architectures

    Get PDF
    As research on building scalable quantum computers advances, it is important to be able to certify their correctness. Due to the exponential hardness of classically simulating quantum computation, straight-forward verification through classical simulation fails. However, we can classically simulate small scale quantum computations and hence we are able to test that devices behave as expected in this domain. This constitutes the first step towards obtaining confidence in the anticipated quantum-advantage when we extend to scales which can no longer be simulated. Realistic devices have restrictions due to their architecture and limitations due to physical imperfections and noise. Here we extend the usual ideal simulations by considering those effects. We provide a general methodology for constructing realistic simulations emulating the physical system which will both provide a benchmark for realistic devices, and guide experimental research in the quest for quantum-advantage. We exemplify our methodology by simulating a networked architecture and corresponding noise-model; in particular that of the device developed in the Networked Quantum Information Technologies Hub (NQIT). For our simulations we use, with suitable modification, the classical simulator of of Bravyi and Gosset. The specific problems considered belong to the class of Instantaneous Quantum Polynomial-time (IQP) problems, a class believed to be hard for classical computing devices, and to be a promising candidate for the first demonstration of quantum-advantage. We first consider a subclass of IQP, defined by Bermejo-Vega et al, involving two-dimensional dynamical quantum simulators, before moving to more general instances of IQP, but which are still restricted to the architecture of NQIT.Comment: 55 pages, 16 figure

    The Viscosity of the Blood;: Its Value in Clinical Medicine.

    No full text
    n/

    Prevalence, Resistance Mechanisms, and Susceptibility of Multidrug-Resistant Bloodstream Isolates of Pseudomonas aeruginosa▿

    No full text
    Pseudomonas aeruginosa is an important pathogen commonly implicated in nosocomial infections. The occurrence of multidrug-resistant (MDR) P. aeruginosa strains is increasing worldwide and limiting our therapeutic options. The MDR phenotype can be mediated by a variety of resistance mechanisms, and the corresponding relative biofitness is not well established. We examined the prevalence, resistance mechanisms, and susceptibility of MDR P. aeruginosa isolates (resistant to ≄3 classes of antipseudomonal agents [penicillins/cephalosporins, carbapenems, quinolones, and aminoglycosides]) obtained from a large, university-affiliated hospital. Among 235 nonrepeat bloodstream isolates screened between 2005 and 2007, 33 isolates (from 20 unique patients) were found to be MDR (crude prevalence rate, 14%). All isolates were resistant to carbapenems and quinolones, 91% were resistant to penicillins/cephalosporins, and 21% were resistant to the aminoglycosides. By using the first available isolate for each bacteremia episode (n = 18), 13 distinct clones were revealed by repetitive-element-based PCR. Western blotting revealed eight isolates (44%) to have MexB overexpression. Production of a carbapenemase (VIM-2) was found in one isolate, and mutations in gyrA (T83I) and parC (S87L) were commonly found. Growth rates of most MDR isolates were similar to that of the wild type, and two isolates (11%) were found to be hypermutable. All available isolates were susceptible to polymyxin B, and only one isolate was nonsusceptible to colistin (MIC, 3 mg/liter), but all isolates were nonsusceptible to doripenem (MIC, >2 mg/liter). Understanding and continuous monitoring of the prevalence and resistance mechanisms of MDR P. aeruginosa would enable us to formulate rational treatment strategies to combat nosocomial infections
    corecore