3 research outputs found

    p21-activated kinase (PAK) regulates cytoskeletal reorganization and directional migration in human neutrophils

    Get PDF
    Neutrophils serve as a first line of defense in innate immunity owing in part to their ability to rapidly migrate towards chemotactic factors derived from invading pathogens. As a migratory function, neutrophil chemotaxis is regulated by the Rho family of small GTPases. However, the mechanisms by which Rho GTPases orchestrate cytoskeletal dynamics in migrating neutrophils remain ill-defined. In this study, we characterized the role of p21-activated kinase (PAK) downstream of Rho GTPases in cytoskeletal remodeling and chemotactic processes of human neutrophils. We found that PAK activation occurred upon stimulation of neutrophils with f-Met-Leu-Phe (fMLP), and PAK accumulated at the actin-rich leading edge of stimulated neutrophils, suggesting a role for PAK in Rac-dependent actin remodeling. Treatment with the pharmacological PAK inhibitor, PF3758309, abrogated the integrity of RhoA-mediated actomyosin contractility and surface adhesion. Moreover, inhibition of PAK activity impaired neutrophil morphological polarization and directional migration under a gradient of fMLP, and was associated with dysregulated Ca2+ signaling. These results suggest that PAK serves as an important effector of Rho-family GTPases in neutrophil cytoskeletal reorganization, and plays a key role in driving efficient directional migration of human neutrophils

    Blood coagulation and beyond: position paper from the fourth Maastricht consensus conference on thrombosis

    Get PDF
    The Fourth Maastricht Consensus Conference on Thrombosis included the following themes. Theme 1: The "coagulome" as a critical driver of cardiovascular disease. Blood coagulation proteins also play divergent roles in biology and pathophysiology, related to specific organs, including brain, heart, bone marrow, and kidney. Four investigators shared their views on these organ- specific topics. Theme 2: Novel mechanisms of thrombosis. Mechanisms linking factor XII to fibrin, including their structural and physical properties, contribute to thrombosis, which is also affected by variation in microbiome status. Virus infection-associated coagulopathies perturb the hemostatic balance resulting in thrombosis and/ or bleeding. Theme 3: How to limit bleeding risks: insights from translational studies. This theme included state-of- the- art methodology for exploring the contribution of genetic determinants of a bleeding diathesis; determination of polymorphisms in genes that control the rate of metabolism by the liver of P2Y12 inhibitors, to improve safety of antithrombotic therapy. Novel reversal agents for direct oral anticoagulants are discussed. Theme 4: Hemostasis in extracorporeal systems: the value and limitations of ex vivo models. Perfusion flow chamber and nanotechnology developments are developed for studying bleeding and thrombosis tendencies. Vascularized organoids are utilized for disease modeling and drug development studies. Strategies for tackling extracorporeal membrane oxygenation-associated coagulopathy are discussed. Theme 5: Clinical dilemmas in thrombosis and antithrombotic management. Plenary presentations addressed controversial areas, i. e., thrombophilia testing, thrombosis risk assessment in hemophilia, novel antiplatelet strategies, and clinically tested factor XI(a) inhibitors, both possibly with reduced bleeding risk. Finally, COVID- 19-associated coagulopathy is revisited.Nephrolog

    A major role for Scar/WAVE-1 downstream of GPVI in platelets

    No full text
    Background: The small GTPase Rac1 plays a critical role in lamellipodia assembly in platelets on matrix proteins in the absence or presence of G protein-coupled receptor (GPCR) agonists. Rac mediates actin assembly via Scar/WAVE, a family of scaffolding proteins that direct actin reorganization by relaying signals from Rac to the Arp2/3 complex. Objective: To evaluate the role of Scar/WAVE-1 in mediating platelet activation and cytoskeletal reorganization. Methods and Results: Using specific antibodies, we demonstrate that murine platelets, like human platelets, express Scar/WAVE-1 and Scar/WAVE-2. Lamellipodia formation in Scar/WAVE-1−/− platelets is markedly inhibited on immobilized collagen-related peptide (CRP) and on laminin, both of which signal through the collagen receptor GPVI. In contrast, lamellipodia formation on collagen, which requires release of the GPCR agonists ADP and thromboxane A2, is not altered. Immobilized fibrinogen supports limited formation of lamellipodia in murine platelets, which is not altered in Scar/WAVE-1−/− platelets. As with Rac1−/− platelets, Scar/WAVE-1−/− platelets exhibit a marked inhibition of aggregation in response to CRP, whereas the response to the GPCR agonist thrombin is not altered. Platelet aggregation on immobilized collagen under shear, which is dependent on signaling by matrix and GPCR agonists, was unaltered in the absence of Scar/WAVE-1. Conclusion: This study demonstrates a major role for Scar/WAVE-1 in mediating platelet cytoskeletal reorganization and aggregate formation downstream of activation by GPVI but not by GPCR agonists
    corecore