14,652 research outputs found
On the Intracluster Medium in Cooling Flow & Non-Cooling Flow Clusters
Recent X-ray observations have highlighted clusters that lack entropy cores.
At first glance, these results appear to invalidate the preheated ICM models.
We show that a self-consistent preheating model, which factors in the effects
of radiative cooling, is in excellent agreement with the observations.
Moreover, the model naturally explains the intrinsic scatter in the L-T
relation, with ``cooling flow'' and ``non-cooling flow'' systems corresponding
to mildly and strongly preheated systems, respectively. We discuss why
preheating ought to be favoured over merging as a mechanism for the origin of
``non-cooling flow'' clusters.Comment: 4 pages, to appear in the proceedings of the "Multiwavelength
Cosmology" Conference held in Mykonos, Greece, June 2003, ed. M. Plionis
(Kluwer
Sum rule of the correlation function
We discuss a sum rule satisfied by the correlation function of two particles
with small relative momenta. The sum rule, which results from the completeness
condition of the quantum states of the two particles, is first derived and then
we check how it works in practice. The sum rule is shown to be trivially
satisfied by free particle pair, and then there are considered three different
systems of interacting particles. We discuss a pair of neutron and proton in
the s-wave approximation and the case of the so-called hard spheres with the
phase shifts taken into account up to l=4. Finally, the Coulomb system of two
charged particles is analyzed.Comment: 18 pages, 18 figures, revised, to appear in Phys. Rev.
Cosmology with velocity dispersion counts: an alternative to measuring cluster halo masses
The evolution of galaxy cluster counts is a powerful probe of several
fundamental cosmological parameters. A number of recent studies using this
probe have claimed tension with the cosmology preferred by the analysis of the
Planck primary CMB data, in the sense that there are fewer clusters observed
than predicted based on the primary CMB cosmology. One possible resolution to
this problem is systematic errors in the absolute halo mass calibration in
cluster studies, which is required to convert the standard theoretical
prediction (the halo mass function) into counts as a function of the observable
(e.g., X-ray luminosity, Sunyaev-Zel'dovich flux, optical richness). Here we
propose an alternative strategy, which is to directly compare predicted and
observed cluster counts as a function of the one-dimensional velocity
dispersion of the cluster galaxies. We argue that the velocity dispersion of
groups/clusters can be theoretically predicted as robustly as mass but, unlike
mass, it can also be directly observed, thus circumventing the main systematic
bias in traditional cluster counts studies. With the aid of the BAHAMAS suite
of cosmological hydrodynamical simulations, we demonstrate the potential of the
velocity dispersion counts for discriminating even similar CDM models.
These predictions can be compared with the results from existing redshift
surveys such as the highly-complete Galaxy And Mass Assembly (GAMA) survey, and
upcoming wide-field spectroscopic surveys such as the Wide Area Vista
Extragalactic Survey (WAVES) and the Dark Energy Survey Instrument (DESI).Comment: 15 pages, 13 figures. Accepted for publication in MNRAS. New section
on cosmological forecasts adde
Barrier and internal wave contributions to the quantum probability density and flux in light heavy-ion elastic scattering
We investigate the properties of the optical model wave function for light
heavy-ion systems where absorption is incomplete, such as Ca
and O around 30 MeV incident energy. Strong focusing effects
are predicted to occur well inside the nucleus, where the probability density
can reach values much higher than that of the incident wave. This focusing is
shown to be correlated with the presence at back angles of a strong enhancement
in the elastic cross section, the so-called ALAS (anomalous large angle
scattering) phenomenon; this is substantiated by calculations of the quantum
probability flux and of classical trajectories. To clarify this mechanism, we
decompose the scattering wave function and the associated probability flux into
their barrier and internal wave contributions within a fully quantal
calculation. Finally, a calculation of the divergence of the quantum flux shows
that when absorption is incomplete, the focal region gives a sizeable
contribution to nonelastic processes.Comment: 16 pages, 15 figures. RevTeX file. To appear in Phys. Rev. C. The
figures are only available via anonynous FTP on
ftp://umhsp02.umh.ac.be/pub/ftp_pnt/figscat
Forever Young: High Chromospheric Activity in M subdwarfs
We present spectroscopic observations of two halo M subdwarfs which have H
alpha emission lines. We show that in both cases close companions are the most
likely cause of the chromospheric activity in these old, metal-poor stars. We
argue that Gl 781 A's unseen companion is most likely a cool helium white
dwarf. Gl 455 is a near-equal-mass M subdwarf (sdM) system. Gl 781 A is rapidly
rotating with v sin i = 30 km/s. The properties of the chromospheres and X-ray
coronae of these systems are compared to M dwarfs with emission (dMe). The
X-ray hardness ratios and optical chromospheric lines emission ratios are
consistent with those seen in dMe stars. Comparison to active near-solar
metallicity stars indicates that despite their low metallicity ([m/H] = -1/2),
the sdMe stars are roughly as active in both X-rays and chromospheric emission.
Measured by L_X/L_bol, the activity level of Gl 781 A is no more than a factor
of 2.5 subluminous with respect to near-solar metallicity stars.Comment: 16 pages including 1 figure, AASTeX, to appear in May 1998 A.
Extremely metal-poor stars from the SDSS
We give a progress report about the activities within the CIFIST Team related
to the search for extremely metal-poor stars in the Sloan Digital Sky Survey's
spectroscopic catalog. So far the search has provided 25 candidates with
metallicities around or smaller -3. For 15 candidates high resolution
spectroscopy with UVES at the VLT has confirmed their extremely metal-poor
status. Work is under way to extend the search to the SDSS's photometric
catalog by augmenting the SDSS photometry, and by gauging the capabilities of
X-shooter when going to significantly fainter targets.Comment: 6 pages, 6 figures, Proceedings paper of the conference "A stellar
journey: A symposium in celebration of Bengt Gustafsson's 65th birthday
Long-range behavior of the optical potential for the elastic scattering of charged composite particles
The asymptotic behavior of the optical potential, describing elastic
scattering of a charged particle off a bound state of two charged, or
one charged and one neutral, particles at small momentum transfer
or equivalently at large intercluster distance
, is investigated within the framework of the exact three-body
theory. For the three-charged-particle Green function that occurs in the exact
expression for the optical potential, a recently derived expression, which is
appropriate for the asymptotic region under consideration, is used. We find
that for arbitrary values of the energy parameter the non-static part of the
optical potential behaves for as
. From this we derive for the
Fourier transform of its on-shell restriction for the behavior , i.e.,
dipole or quadrupole terms do not occur in the coordinate-space asymptotics.
This result corroborates the standard one, which is obtained by perturbative
methods. The general, energy-dependent expression for the dynamic
polarisability is derived; on the energy shell it reduces to the
conventional polarisability which is independent of the energy. We
emphasize that the present derivation is {\em non-perturbative}, i.e., it does
not make use of adiabatic or similar approximations, and is valid for energies
{\em below as well as above the three-body dissociation threshold}.Comment: 35 pages, no figures, revte
Discovery of seven T Tauri stars and a brown dwarf candidate in the nearby TW Hydrae Association
We report the discovery of five T Tauri star systems, two of which are
resolved binaries, in the vicinity of the nearest known region of recent star
formation, the TW Hydrae Association. The newly discovered systems display the
same signatures of youth (namely high X-ray flux, large Li abundance and strong
chromospheric activity) and the same proper motion as the original five
members. These similarities firmly establish the group as a bona fide T Tauri
association, unique in its proximity to Earth and its complete isolation from
any known molecular clouds.
At an age of ~10 Myr and a distance of ~50 pc, the association members are
excellent candidates for future studies of circumstellar disk dissipation and
the formation of brown dwarfs and planets. Indeed, as an example, our speckle
imaging revealed a faint, very likely companion 2" north of CoD-33 7795 (TWA
5). Its color and brightness suggest a spectral type ~M8.5 which, at an age of
~10^7 years, implies a mass ~20 M(Jupiter).Comment: 6 pages, 4 figures and 1 table. AAS LaTeX aas2pp4.sty. To be
published in Ap
- …