855 research outputs found

    Kirigami Actuators

    Full text link
    Thin elastic sheets bend easily and, if they are patterned with cuts, can deform in sophisticated ways. Here we show that carefully tuning the location and arrangement of cuts within thin sheets enables the design of mechanical actuators that scale down to atomically-thin 2D materials. We first show that by understanding the mechanics of a single, non-propagating crack in a sheet we can generate four fundamental forms of linear actuation: roll, pitch, yaw, and lift. Our analytical model shows that these deformations are only weakly dependent on thickness, which we confirm with experiments at centimeter scale objects and molecular dynamics simulations of graphene and MoS2_{2} nanoscale sheets. We show how the interactions between non-propagating cracks can enable either lift or rotation, and we use a combination of experiments, theory, continuum computational analysis, and molecular dynamics simulations to provide mechanistic insights into the geometric and topological design of kirigami actuators.Comment: Soft Matter, 201

    Quantum-enhanced protocols with mixed states using cold atoms in dipole traps

    Get PDF
    We discuss the use of cold atoms in dipole traps to demonstrate experimentally a particular class of protocols for computation and metrology based on mixed states. Modelling of the system shows that, for a specific class of problems (tracing, phase estimation), a quantum advantage can be achieved over classical algorithms for very realistic conditions and strong decoherence. We discuss the results of the models and the experimental implementation

    Electronic Structure of Ladder Cuprates

    Full text link
    We study the electronic structure of the ladder compounds (SrCa)CuO 14-24-41 and SrCuO 123. LDA calculations for both give similar Cu 3d-bands near the Fermi energy. The hopping parameters estimated by fitting LDA energy bands show a strong anisotropy between the t_perp t_par intra-ladder hopping and small inter-ladder hopping. A downfolding method shows that this anisotropy arises from the ladder structure.The conductivity perpendicular to the ladders is computed assuming incoherent tunneling giving a value close to experiment.Comment: 5 pages, 3 figure

    Hyperfine structure of the A1Π\mathbf{A^{1}\Pi} state of AlCl and its relevance to laser cooling and trapping

    Full text link
    The majority of molecules proposed for laser cooling and trapping experiments have Σ\Sigma-type ground states. Specifically, 2Σ^2\Sigma states have cycling transitions analogous to D1-lines in alkali-metal atoms while 1Σ^1\Sigma states offer both strong and weak cycling transitions analogous to those in alkaline-earth atoms. Despite this proposed variety, to date, only molecules with 2Σ^2\Sigma-type ground states have successfully been confined and cooled in magneto-optical traps. While none of the proposed 1Σ^1\Sigma-type molecules have been successfully laser cooled and trapped, they are expected to have various advantages in terms of exhibiting a lower chemical reactivity and an internal structure that benefits the cooling schemes. Here, we present the prospects and strategies for optical cycling in AlCl -- a 1Σ^1\Sigma molecule -- and report on the characterization of the A1ΠA^{1}\Pi state hyperfine structure. Based on these results, we carry out detailed simulations on the expected capture velocity of a magneto-optical trap for AlCl. Finally, using {\it ab initio} calculations, we identify the photodissociation via a 31Π3^1\Pi state and photoionization process via the 31Σ+3^1\Sigma^+ state as possible loss mechanisms for a magneto-optical trap of AlCl.Comment: 15 pages, 7 figure

    Magnetic excitations and structural change in the S=1/2 quasi-one-dimensional magnet Sr_{14-x}Y_{x}Cu_{24}O_{41} (0<x<1)

    Full text link
    Neutron scattering measurements have been performed on the S=1/2 quasi-one-dimensional system Sr_{14-x}Y_{x}Cu_{24}O_{41}, which has both simple chains and two-leg ladders of copper ions. We observed that when a small amount of yttrium is substituted for strontium, which is expected to reduce the number of holes, the dimerized state and the structure in the chain are changed drastically. The inelastic peaks originating from the dimerized state of the chain becomes broader in energy but not in momentum space. This implies that the dimerized state becomes unstable but the spin correlations are unchanged with yttrium substitution. Furthermore, it was observed that nuclear Bragg peak intensities originating from the chain show strong temperature and x dependence, which suggests that the chains slide along the c axis as temperature and x are varied.Comment: 5 pages, 6 figures, to appear in Phys. Rev.

    On the Timing and Nature of the Multiple Phases of Slope Instability on Eastern Rockall Bank, Northeast Atlantic

    Get PDF
    One of the most challenging tasks when studying large submarine landslides is determining whether the landslide was initiated as a single large event, a chain of events closely spaced in time or multiple events separated by long periods of time as all have implications in risk assessments. In this study we combine new multichannel seismic profiles and new sediment cores with bathymetric data to test whether the Rockall Bank Slide Complex, offshore western Ireland, is the composite of multiple slope collapse events and, if so, to differentiate them. We conclude that there have been at least three voluminous episodes of slope collapse separated by long periods of slope stability, a fourth, less voluminous event, and possibly a fifth more localized event. The oldest event, Slide A (200 km3), is estimated to be several hundred thousand years old. The second event, Slide B (125 km3), took place at the same location as slide A, reactivating the same scar, nearly 200 ka ago, possibly through retrogression of the scarp. Slide C (400 km3) took place 22 ka ago and occurred further north from the other slides. Slide D was a much smaller event that happened 10 ka ago, while the most recent event, albeit very small scale, took place within the last 1,000 years. This study highlights the need to thoroughly investigate large slide complexes to evaluate event sequencing, as seismic studies may hide multiple small‐scale events. This work also reveals that the same slide scarps can be reactivated and generate slides with different flow behaviors

    Electronic structure and exchange interactions of the ladder vanadates CaV2O5 and MgV2O5

    Full text link
    We have performed ab-initio calculations of the electronic structure and exchange couplings in the layered vanadates CaV2O5 and MgV2O5. Based on our results we provide a possible explanation of the unusual magnetic properties of these materials, in particular the large difference in the spin gap between CaV2O5 and MgV2O5

    Last months of life of people with intellectual disabilities: A UK population-based study of death and dying in intellectual disability community services.

    Get PDF
    BACKGROUND: Population-based data are presented on the nature of dying in intellectual disability services. METHODS: A retrospective survey was conducted over 18 months with a sample of UK-based intellectual disability service providers that supported over 12,000. Core data were obtained for 222 deaths within this population. For 158 (71%) deaths, respondents returned a supplemented and modified version of VOICES-SF. RESULTS: The observed death was 12.2 deaths per 1,000 people supported per year, but just over a third deaths had been deaths anticipated by care staff. Mortality patterns, place of usual care and availability of external support exerted considerable influence over outcomes at the end of life. CONCLUSION: Death is not a common event in intellectual disability services. A major disadvantage experienced by people with intellectual disabilities was that their deaths were relatively unanticipated. People with intellectual disabilities living in supported living settings, even when their dying was anticipated, experienced poorer outcomes

    Three-Dimensional Multiband d-p Model of Superconductivity in Spin-Chain Ladder Cuprate

    Full text link
    We study the superconductivity in the three-dimensional multiband d-p model, in which a Cu2_2O3_3-ladder layer and a CuO2_2-chain layer are alternately stacked, as a model of the superconducting spin-chain ladder cuprate. pzp_z-Wave-like triplet superconductivity is found to be the most stable, and its dependence on interlayer coupling can explain the superconducting transition temperature dependence on pressure in real superconducting spin-chain ladder cuprates. The superconductivity may be enhanced if hole transfer from the chain layer to the ladder layer can be promoted beyond the typical transfer rate.Comment: 16 pages, 8 figure
    corecore