782 research outputs found

    Scale-up of lentiviral vectors for gene therapy: advances and challenges

    Get PDF
    Published: Nov 16 2017Growing interest in the use of lentiviral (LV) vectors for gene therapy applications has resulted in demand for production processes that are amenable to large scale. However, up-scaling LV manufacturing poses a number of challenges for process developers and regulatory bodies, which need to be overcome in order to cost effectively generate a gene therapy product in large quantities. Recently there has been progress in developing workflows capable of producing and processing LV vector at sufficient levels for human gene therapy applications. Accordingly, this article will cover the current state of LV upstream and downstream processing, ongoing challenges of up-scaling manufacturing, recent advances and improvements, and future perspectives.Alexandra McCarron, Martin Donnelley & David Parson

    Effect of poly(ethylene glycol) on insulin stability and cutaneous cell proliferation in vitro following cytoplasmic delivery of insulin-loaded nanoparticulate carriers – A potential topical wound management approach

    Get PDF
    We describe the development of a nanoparticulate system, with variation of poly(ethylene glycol) (PEG) content, capable of releasing therapeutic levels of bioactive insulin for extended periods of time. Recombinant human insulin was encapsulated in poly(d,l-lactide-co-glycolide) nanoparticles, manufactured with variation in poly(ethylene glycol) content, and shown to be stable for 6days using SDS-PAGE, western blot and MALDI MS. To determine if insulin released from this sustained release matrix could stimulate migration of cell types normally active in dermal repair, a model wound was simulated by scratching confluent cultures of human keratinocytes (HaCaT) and fibroblasts (Hs27). Although free insulin was shown to have proliferative effect, closure of in vitro scratch fissures was significantly faster following administration of nano-encapsulated insulin. This effect was more pronounced in HaCaT cells when compared to Hs27 cells. Variation in PEG content had the greatest effect on NP size, with a lesser influence on scratch closure times. Our work supports a particulate uptake mechanism that provides for intracellular insulin delivery, leading to enhanced cell proliferation. When placed into an appropriate topical delivery vehicle, such as a hydrogel, the extended and sustained topical administration of active insulin delivered from a nanoparticulate vehicle shows promise in promoting tissue healing

    Conductivity of Doped Two-Leg Ladders

    Full text link
    Recently, conductivity measurements were performed on the hole-doped two-leg ladder material Sr_{14-x}Ca_xCu_{24}O_{41}. In this work, we calculate the conductivity for doped two-leg ladders using a model of hole-pairs forming a strongly correlated liquid - a single component Luttinger liquid - in the presence of disorder. Quantum interference effects are handled using renormalization group methods. We find that our model can account for the low energy features of the experimental results. However, at higher energies the experiments show deviations from the predictions of this model. Using the results of our calculations as well as results on the ground state of doped two-leg ladders, we suggest a scenario to account for the higher energy features of the experimental results.Comment: 5 pages, 3 postscript figure

    To bead or not to bead: A review of Pseudomonas aeruginosa lung infection models for cystic fibrosis

    Get PDF
    Cystic fibrosis (CF) lung disease is characterised by recurring bacterial infections resulting in inflammation, lung damage and ultimately respiratory failure. Pseudomonas aeruginosa is considered one of the most important lung pathogens in those with cystic fibrosis. While multiple cystic fibrosis animal models have been developed, many fail to mirror the cystic fibrosis lung disease of humans, including the colonisation by opportunistic environmental pathogens. Delivering bacteria to the lungs of animals in different forms is a way to model cystic fibrosis bacterial lung infections and disease. This review presents an overview of previous models, and factors to consider when generating a new P. aeruginosa lung infection model. The future development and application of lung infection models that more accurately reflect human cystic fibrosis lung disease has the potential to assist in understanding the pathophysiology of cystic fibrosis lung disease and for developing treatments.Nicole Reyne, Alexandra McCarron, Patricia Cmielewski, David Parsons, and Martin Donnelle

    Small-molecule Bcl-2 inhibitors sensitise tumour cells to immune-mediated destruction

    Get PDF
    The cytotoxic effects of anticancer immune cells are mediated by perforin/granzyme-B, Fas ligand and tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), and therefore depend on intact apoptotic responses in target tumour cells. As killing by all three of these mechanisms is blocked by the frequently overexpressed antiapoptotic oncoprotein Bcl-2, we hypothesised that coexposure to a Bcl-2 inhibitor might enhance anticancer immune responses. We evaluated this in U937 lymphoma cells, and A02 melanoma cells, which both show strong Bcl-2 expression. VΞ±24+ VΞ²11+ natural killer T (NKT) cells expanded from peripheral blood of normal donors (n=3) were coincubated with PKH26-labelled U937 cells, and cytotoxicity was determined by flow cytometry after annexin-V-FITC and 7-AAD staining. In all cases, addition of the HA14-1 small-molecule Bcl-2 inhibitor to the cocultures significantly increased apoptosis in the target U937 cells. Using a similar assay, killing of A02 cells by the cytotoxic T-lymphocyte clone 1H3 was shown to be amplified by coexposure to the potent small-molecule Bcl-2 inhibitor ABT-737. Experiments with immune effectors preincubated with concanamycin-A suggested that sensitisation to perforin/granzyme-B may underlie enhanced target-cell killing observed in the presence of Bcl-2 inhibitors. We conclude that immune destruction of malignant cells can be amplified by molecular interventions that overcome Bcl-2-mediated resistance to apoptosis

    Electronic Structure of Ladder Cuprates

    Full text link
    We study the electronic structure of the ladder compounds (SrCa)CuO 14-24-41 and SrCuO 123. LDA calculations for both give similar Cu 3d-bands near the Fermi energy. The hopping parameters estimated by fitting LDA energy bands show a strong anisotropy between the t_perp t_par intra-ladder hopping and small inter-ladder hopping. A downfolding method shows that this anisotropy arises from the ladder structure.The conductivity perpendicular to the ladders is computed assuming incoherent tunneling giving a value close to experiment.Comment: 5 pages, 3 figure
    • …
    corecore