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Abstract 33 

We describe the development of a nanoparticulate system, with variation of poly(ethylene 34 

glycol) (PEG) content, capable of releasing therapeutic levels of bioactive insulin for extended 35 

periods of time.  Recombinant human insulin was encapsulated in poly(D,L-lactide-co-glycolide) 36 

nanoparticles, manufactured with variation in poly(ethylene glycol) content, and shown to be 37 

stable for 6 days using SDS-PAGE, western blot and MALDI MS.  To determine if insulin 38 

released from this sustained release matrix could stimulate migration of cell types normally 39 

active in dermal repair, a model wound was simulated by scratching confluent cultures of human 40 

keratinocytes (HaCaT) and fibroblast (Hs27).  An important finding of this work was that closure 41 

of the scratch fissures was significantly faster in the presence of nano-encapsulated insulin when 42 

compared to the free form, with a more pronounced effect observed in HaCaT cells when 43 

compared to Hs27 cells.  Variation in PEG content had the greatest effect on NP size, with a 44 

lesser influence on scratch closure times.  Our work supports a particulate uptake mechanism 45 

that provides for intracellular insulin delivery, leading to enhanced cell proliferation.  When 46 

placed into an appropriate topical delivery vehicle, such as hydrogel, the extended and sustained 47 

topical administration of active insulin delivered from a nanoparticulate vehicle shows promise 48 

in promoting tissue healing. 49 

 50 

Keywords 51 

Sustained topical delivery; insulin-loaded PLGA NP; poly(ethylene glycol); wound scratch 52 

closure; keratinocyte; fibroblasts 53 

  54 
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1. Introduction 55 

Insulin, a peptide hormone with multiple physiological roles, restores integrity of damaged skin.  56 

It is of interest in the field of wound repair, due particularly to low cost relative to other peptide-57 

based growth factors.  Its beneficial effects first became apparent after discernible differences 58 

were recorded in the rate of postoperative wound healing between diabetic and non-diabetic 59 

patients [1].  In the former group, wounds were less likely to re-epithelialise normally, making 60 

them susceptible to infection.  Such findings prompted the development and evaluation of the 61 

therapeutic benefits of insulin when incorporated into wound dressings, bioadhesive films and 62 

hydrogels [1].  Recalcitrant, non-healing wounds remain a major healthcare challenge that 63 

plagues patients with chronic illness.  Notwithstanding systemic insulin therapy and a carefully 64 

regulated life style, approximately 15% of all diabetic patients will have some form of non-65 

healing wound and be susceptible to amputation of the lower extremities [2]. 66 

Direct administration of insulin to the wound surface is known to be clinically effective, 67 

especially when the rate of closure is considered.  Results confirm that insulin stimulates 68 

keratinocyte migration in a dose and time dependent manner, acting in an insulin-receptor-69 

dependent, but EGF/EGF-R-independent, manner [3].  Conversely, the ability to stimulate both 70 

the insulin and IGF-1 receptors may broaden the applicability of insulin in different wound 71 

types, particularly when one receptor may be dysfunctional (e.g. in Type II diabetes).  72 

Consequently, it has been shown that topically applied insulin increases wound tensile strength 73 

and accelerates healing in Wistar rats [4].  Similarly, topical administration to linear 74 

musculoperitoneal wounds in the murine model leads to faster wound healing, with histological 75 

examination demonstrating earlier appearance of collagen fibres with denser and well-oriented 76 

morphology [5].  Understanding the process by which insulin accelerates the wound closure is 77 
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important because it will provide insight into many potential applications directed to the healing 78 

process [6]. 79 

Several insulin-loaded formulation types have been developed and evaluated.  For example, 80 

Lima et al. [7] investigated the effect of a topical cream, containing insulin, showing that it 81 

decreases wound healing time and induces a rescue in the levels of tissue proteins involved in the 82 

early steps of insulin action.  Topical application of this patented insulin-containing cream was 83 

shown to normalise the wound healing time in diabetic animals.  In a similar study, Achar et al. 84 

[8] showed that topical use of a cream containing insulin-like growth factor (IGF-1) improves 85 

wound healing in both diabetic and non-diabetic animals, with increased expression of 86 

fibroblasts.  In addition, an insulin-containing, spray-based formulation has been used 87 

successfully to treat patients with diabetic ulcers [9].  These approaches, which deliver insulin in 88 

the free form, benefit from the location of the insulin receptor, which contains four sub-units and 89 

is located on the plasma membrane.  This free insulin rapidly mediates the short-term effects on 90 

membrane function, such as the uptake of glucose, and the full biological effects are brought 91 

about when less than 10% of the total cell surface insulin receptors are occupied [10]. 92 

Recently, topical formulations have utilised nano-sized carriers as novel drug delivery 93 

vehicles, such as polymeric nanoparticles (NP), liposomes and nano-emulsions, to enhance 94 

cutaneous delivery of pharmaceutically active materials, such as topically applied peptides [11].  95 

Colloidal vehicles sustain release, protect peptides and proteins from chemical and physical 96 

degradation, and provide targeting opportunities for cell-directed and tissue-specific targeting 97 

using conjugating techniques [12].  They are made from a wide range of polymeric materials, but 98 

poly(D,L-lactide-co-glycolide) (PLGA), being both biodegradable and biocompatible, has 99 

enjoyed widespread interest and is capable of controlled release for several days [13].  It can be 100 
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made in nanoparticulate form and loaded with a range of molecular drug substances and is 101 

amenable to the usual means of enhanced cutaneous delivery, such as iontophoresis [14].  102 

Importantly, these nanoparticulate carriers can be endocytosed by cells and delivery of an 103 

encapsulated payload directly into the cytosol becomes feasible.  Although insulin receptors 104 

reside on the plasma membrane, studies demonstrate their presence on intracellular organelles, 105 

such as the Golgi apparatus, endoplasmic reticulum and the nucleus [15]. As free insulin does 106 

not readily cross the plasma membrane, the use of endocytosed insulin-loaded carriers could 107 

provide a novel means to bring about binding to intracellular insulin receptors. 108 

In this present study, we compared the effect of insulin on keratinocyte and fibroblast 109 

populations delivered by either intracellular nanoparticulate delivery or via the free form.  The 110 

aim of the former approach was to investigate proliferative effects following activation of 111 

intracellular insulin receptors, whilst the latter approach would consider activation of membrane-112 

bound receptors.  Human recombinant insulin was loaded into PLGA NP using a modified, 113 

double-emulsion, solvent technique.  Importantly, the effect of poly(ethylene glycol) content, 114 

which is known to affect both colloidal stability [16] and cellular uptake of colloidal carriers [17] 115 

was investigated.  Nanoparticles were characterised according to encapsulation efficiency, 116 

surface morphology, particle size, polydispersity index (PDI), zeta potential and in vitro release 117 

profile.  Insulin integrity and stability were assessed in vitro using SDS-PAGE, western blot and 118 

MALDI mass spectrometry.  In vitro studies were performed on kerotinocyte and fibroblast cell 119 

lines in order to assess insulin-mediated cellular migration in the context of wound repair.  A 120 

proposed mechanism of nanoparticulate uptake facilitated by endocytosis was investigated using 121 

inhibition of vesicle formation following exposure to dynasore hydrate. 122 

  123 
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2. Materials and Methods 124 

2.1 Materials 125 

Insulin, recombinant human, dry powder and poly(D,L-lactide-co-glycolide, acid terminated, 126 

lactide:glycolide 50:50, MW 24,000-38,000) were purchased from Sigma Aldrich, UK.  127 

Dimethylsulfoxide (DMSO), hydrochloric acid (HCl), acetic acid, trifluroacetic acid (TFA), 128 

trypan blue and crystal violet solutions were purchased from Fluka, Sigma Aldrich, UK.  129 

Poly(vinyl alcohol) (PVA, MW=31,000-50,000, 87-89% hydrolysed), poly(ethylene glycol) 130 

flakes (PEG, Mw 2000 Da and 5000 Da), sucrose powder and potassium chloride (KCl) were all 131 

purchased from Sigma Aldrich, UK.  Dulbeco’s phosphate-buffered saline (DPBS) and sodium 132 

hydroxide (NaOH) were purchased from Fisher Scientific, UK.  A BCA Protein Assay Kit was 133 

purchased from Thermo Fisher Scientific, Pierce Biotechnology Inc., USA.  3-(4,5-134 

Dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) was purchased from Arcos, Organics, 135 

New Jersey, USA. 136 

Human keratinocytes (HaCaT) were provided by Cell Line Services, Eppelheim, 137 

Germany [18].  Human fibroblasts (Hs27) were supplied from ATCC, UK.  Dulbecco’s modified 138 

Eagle’s medium (DMEM, 1X), fetal bovine serum (FBS), 0.5% trypsin-EDTA (10X) and 139 

penicillin streptomycin solution (Pen-Strep) were all purchased from Gibco
®
 life technologies, 140 

UK.  Dynasore hydrate was purchased from Sigma Aldrich, UK.  Dichloromethane (DCM), 141 

trifluoroacetic acid (TFA), acetonitrile and methanol were of HPLC grade.  All other reagents 142 

and solvents were of appropriate laboratory standard and used without further purification. 143 

 144 

2.2 PLGA NP preparation 145 
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Insulin-loaded NP were prepared using a double-emulsion, solvent evaporation technique, 146 

adapted with minor modification [19].  Briefly, 0.1 ml of an aqueous insulin solution (5 mg, 147 

dissolved in a mixture of 0.1 M HCL and PVA 2.5 % w/v, pH 1-2) was added drop-wise to an 148 

organic phase (4.0 ml dichloromethane, DCM) comprising 100 mg of PLGA.  This organic 149 

phase contained variations in PEG content, both in concentration and molecular weight, as 150 

defined by the Formula codes in Table 1.  This primary emulsion was agitated in an ice bath for 151 

120 s at 1000 rpm (Ultra-Turrax
®
 T10 Basic Disperser, IKA

®
 Works, VWR 

®
International, UK) 152 

before drop-wise addition to 50 ml of an external aqueous phase containing 1.25% w/v PVA 153 

[20], with continuous stirring in an ice bath for 360 s at 10,000 rpm (model L5M-A Silverson
 

154 

Ltd., UK).  DCM was evaporated under magnetic stirring overnight.  NP were collected by 155 

centrifugation (3-30k, Sigma Laboratory Centrifuge Henderson Biomedical Ltd., Germany) at 156 

11,000 x g for 30 minutes at 4 ºC and washed with three sequential steps, 10 minutes for each, 157 

using distilled water, 2% w/v sucrose solution [21] then distilled water.  The pellet was frozen at 158 

-20 ºC for 4-6 hours and then lyophilised (4.5 Plus, Labconco Ltd., USA) for 48 hours. 159 

 160 

2.3 Particle size and zeta potential measurements   161 

Surface charge (zeta potential, mV) was determined by measuring electrophoretic mobility.  162 

Particulate size (diameter, nm) and polydispersity index were determined by photon correlation 163 

spectrometry (ZetaSizer Nano series, Malvern Instruments, Worcestershire, UK), using a He-Ne 164 

laser operating at 633 nm and a fixed scattering angle of 90º.  Measurements were performed in 165 

triplicate at 25 ºC for samples diluted in either distilled water or 1.0 mM KCl solution. 166 

 167 

2.4 Chromatographic analysis 168 
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Aqueous concentrations of recombinant human insulin were determined using reversed phase 169 

HPLC (Shimadzu Corporation, Kyoto, Japan).  Separation was performed on a Luna
®
 C18 170 

column (5 μm, 150×4.6 mm, Phenomenex, CA, USA).  The mobile phase comprised a binary 171 

mixture of 0.1% trifluroacetic acid in water and 0.1% trifluroacetic acid in acetonitrile [22].  172 

Gradient elution was applied by increasing acetonitrile concentration from 10% to 35% over a 173 

15-minute period.  Detection was at 210 nm with a flow rate of 1.1 ml per minute.  Analysis was 174 

conducted at ambient temperature and peak area was used to quantify the analyte concentration. 175 

 176 

2.5 Drug loading (DL) and entrapment efficiency (EE) 177 

The amount of encapsulated insulin was determined by analysing protein content within the NP 178 

matrix (entrapped fraction), together with an analysis of the supernatant (non-entrapped protein 179 

fraction).  The entrapped fraction was measured using a bicinchoninic acid assay following the 180 

digestion of lyophilised NP (15 mg) using 1.0 M NaOH for 2 hours and subsequent 181 

neutralisation with 1.0 M HCl [19].  Drug loading and direct EE (%) were calculated from Eq. 182 

(1) and (2), respectively [23]. 183 

 184 

DL = Mass of drug in NP (mg)
Mass of NP (mg)

         (1) 185 

 186 
 187 

 Direct EE (%)=
Mass of drug in NP (mg)

Mass of drug used (mg)
 x 100       (2) 188 

 189 
 190 
 191 

Insulin concentration in the supernatant was determined using RP-HPLC, as described in Section 192 

2.4.  This indirect EE (%) was calculated using Eq. (3) [24]. 193 

 194 
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Indirect %EE = Total mass of drug used (mg)-mass of drug in supernatant (mg) 
 Total mass of drug used (mg) 

x 100  (3) 195 

 196 

2.6 In vitro release kinetics 197 

Lyophilised, insulin-loaded NP (15 mg) were suspended in 1.0 ml phosphate-buffered saline 198 

solution (PBS pH 7.4).  The samples were placed in a rotating mixer (Stuart Rotator Drive STR4, 199 

Bibby Scientific Ltd., UK) at 100 rpm and incubated at 37 °C.  Samples were withdrawn at 200 

predetermined time intervals over 6 days and centrifuged at 5500 x g (Mini-Spin Eppendorf, 201 

Davidson & Hardy Ltd., UK) for 5 minutes.  The release medium was removed and 1.0 ml of 202 

fresh medium added [25].  Each sample was analysed using RP-HPLC, as described in Section 203 

2.4. 204 

 205 

2.7 Morphological characterisation 206 

Lyophilised NP were vacuum-coated for 3 minutes with a mixture of gold and palladium and 207 

examined for morphology scanning electron microscopy at 20 kV (Zeiss, Oberkochen, 208 

Germany). 209 

 210 

2.8 In vitro drug stability 211 

 212 

Gel electrophoresis (SDS-PAGE) and western blotting  213 

Samples (10 µl) of insulin standard, insulin released from NP and a protein ladder (See Blue
®
 214 

Plus2 Pre-stained Protein Standard, Novex 
TM 

Thermo Fisher Scientific, UK) were applied to the 215 

wells of a NUPAGE
®
 Bis-Tris 12 % gel (Invitrogen, Thermo Fisher Scientific, UK) using a 216 

mini-cell electrophoresis system (X-cell Surelock
TM

, Invitrogen, Thermo Fisher Scientific, UK).  217 
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Peptide samples were vortexed with 2 µl Laemmli sample buffer (60 mM Tris-Cl pH 6.8, 2% 218 

SDS, 10% glycerol, 5% β-mercaptoethanol and 0.01% bromophenol blue) and heated at 100 °C 219 

for 10 minutes.  The inner chamber of the electrophoresis cell was filled with 200 ml of running 220 

buffer (NuPAGE
®
 MES SDS Running Buffer, 20X, Invitrogen, Thermo Fisher Scientific, UK) 221 

with the addition of 500 μl antioxidant (Invitrogen, Thermo Fisher Scientific, UK) to improve 222 

band separation.  The outer chamber was filled with 600 ml of the same running buffer.  Samples 223 

were run for approximately 90 minutes at 200 V (~100 mA) until they reached the bottom of the 224 

gel.  Coomassie blue dye was used to stain the gel for 2-3 hours, assisted by orbital shaking.  A 225 

destaining solution of methanol: acetic acid: water (5:4:1 v/v) was applied to the gel for 3-4 226 

hours.  Images of peptide bands were captured by high resolution photography (GelDoc-It 
TM

, 227 

UVP, Cambridge, UK). 228 

Western blot analysis was carried out using a standard wet blotting procedure on a 0.45 229 

μm pore size membrane with a BenchMark
® Pre-Stained protein standard ladder (Novex TM 230 

Thermo Fisher Scientific, UK).  Electro-blotting was carried out for 1 hour at 200 V (~100 mA).  231 

Once protein transfer was finished, the membrane was removed and stained with Ponceau S 232 

solution (Sigma Aldrich, UK) for 3 minutes and then washed with distilled water, 0.1 M NaOH 233 

and Tris-buffered saline (TBS) buffer for 3 minutes each.  A solution of 5% w/v of BSA in TBS 234 

buffer was added to nitrocellulose membrane with gentle shaking for 3 hours and then the 235 

membrane was incubated at 4 ºC overnight.  The membrane was then washed twice with TBS 236 

buffer, before the addition of the primary antibody (guinea pig anti-human insulin IgG, 1:1000 237 

dilution in TBS) for 3 hours at room temperature on an orbital shaker and then the membrane 238 

washed three times with TBS before the addition of the secondary antibody enzyme conjugate 239 

goat anti-guinea pig IgG alkaline phosphatase conjugate (1:30000 in TBS) for 3 hours at room 240 
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temperature with gentle shaking.  Finally, the membrane was washed twice with TBS and 241 

BCIP/NBT substrate solution added to the membrane to visualise protein bands. 242 

 243 

MALDI-TOF mass spectrometry 244 

MALDI-TOF MS equipped with a 1-minute time-of-flight tube was used in this study (Voyager-245 

DE Biospectrometer, PerSeptive Biosystems, Hertfordshire, UK).  A 1.5 μl aliquot of insulin 246 

standard solution (30 μl ml
-1

) in 0.01 M HCL and insulin extracted from NP (obtained after the 247 

digestion with 200 μl DCM and extraction into 500 μl 0.01 M HCL) were pipetted onto a 248 

predefined well of a 100-well stainless-steel plate and allowed to dry at ambient temperature.  A 249 

10 mg ml
-1

 solution of α-cyano-4-hydroxycinnamic acid (CHCA, Fluka, Sigma Aldrich, UK) 250 

was prepared in acetonitrile/ultrapure water/trifluoroacetic acid (80:20:0.1%).  A 1.5 µl aliquot 251 

of CHCA matrix was added to the sample spot and allowed to dry at ambient temperature.  All 252 

measurements were collected in linear positive ionisation mode using 50 laser shots per 253 

spectrum.  The accelerating voltage was maintained at 20 kV.  The mass/charge ratio (m/z) was 254 

plotted against relative abundance. 255 

 256 

2.9 Cell culture studies 257 

HaCaT and Hs27 cells were cultured in complete DMEM media supplemented with 10% FBS 258 

and 1% Pen-Strep.  Cells were incubated at 37 ºC and maintained in an atmosphere of 5% CO2.  259 

When cells reached 80–90% confluency, the media was aspirated and cells were washed with 15 260 

ml PBS.  Cells were then detached with 3 ml of 0.5 % trypsin-EDTA solution and incubated for 261 

5 minutes.  Trypsin was neutralised with complete media, and cells centrifuged at 10 rpm for 5 262 

minutes, then resuspended in 10 ml of fresh complete media.  Cells were counted by removing 263 
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10 μl of suspension and combining it with an equal volume of trypan blue solution.  This mixture 264 

was vortexed, loaded into a haemocytometer chamber (Hawksley, UK) and counted visually 265 

(Primovet, ZEISS Industrial Company, Germany). 266 

 267 

Cell culture scratch assay 268 

A standard in vitro technique for detecting cell migration in two dimensions was used in this 269 

study.  Known as a scratch assay or wound healing assay (WHA), it is based on formation of a 270 

cell-free region in a confluent monolayer by physical exclusion or by creating a cell-free gap 271 

through mechanical, thermal or chemical damage.  HaCaT and Hs27 cell suspensions were 272 

diluted to 250,000 cells per ml in complete media and seeded into 24-well plates (Thermo 273 

Scientific, Korea) to a final well volume of 1.0 ml.  Cells formed a confluent layer after 24 hours 274 

and then a double cross scratch was made using a sterile pipette tip.  All wells were then washed 275 

twice with 1.0 ml PBS to remove cellular debris.  A solution of free insulin (10
-7 

M) [26] and 276 

suspensions of insulin-loaded NP of variable PEG content containing 10
−7

 M insulin (Table1) 277 

were prepared in complete media (DMEM, 10% FBS and 1% Pen-Strep).  Scratches were 278 

photographed and measured using bright field inverted microscopy at different time intervals 279 

depending on the rate of cell migration.  The percent scratch closure at each time interval was 280 

normalised to the scratch length at the zero-time point.  Wells containing 1.0 ml of complete 281 

media served as controls. 282 

 283 

Cell viability assay 284 

The effect of human insulin-loaded NP on cell proliferation was evaluated using an MTT assay, 285 

as described previously [27].  Briefly, cells (HaCaT or Hs27) were seeded in 96-well plates at an 286 
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initial density of 10000 cells per ml in complete DMEM medium.  After 24 hours, the medium 287 

was replaced with 200 μl of fresh medium containing insulin-loaded NP (equivalent to 10
-7

 M 288 

insulin).  Free insulin of equivalent concentrations was added as a control.  The MTT assay was 289 

performed after predetermined time intervals of 12, 24 and 36 hours of incubation.  Wells were 290 

photographed using bright field inverted microscopy.  Cell viability was quantified by measuring 291 

absorbance at 590 nm (FLUOstar Omega, BMG LabTech, Germany) and compared to that of 292 

non-treated controls. 293 

 294 

Uptake studies using dynasore hydrate 295 

Dynasore, a cell permeable inhibitor, acts as a potent and rapid blocker of dynamin-dependent 296 

endocytic pathways by inhibiting coated vesicle formation [28].  To investigate the effect of 297 

dynasore additon on cellular uptake of NP, a stock solution (16 mM) of dynasore hydrate 298 

prepared in DMSO was diluted to 80 µM with DMEM.  Cells (HaCaT or Hs27) were seeded in 299 

96-well plates at an initial density of 10000 cells per ml in complete DMEM medium.  After 24 300 

hour of incubation, the medium was replaced with 100 μl of dynasore working solution (80 µM).  301 

After 30 minutes, the dynasore solution was replaced with either a suspension of insulin-loaded 302 

NP (FII) or free insulin solution (both equivalent to 10
-7

 M of insulin).  The MTT assay was 303 

performed after 12 hour of incubation.  To investigate the effect of a long-acting mechanism 304 

following prolonged dynasore exposure beyond the 30-minute interval, a second experiment was 305 

performed.  Wells containing a mixture of dynasore solution and NP suspension (FII) were kept 306 

for 12 hours, while maintaining the concentration of dynasore and insulin at 80 µM and 10
-7

 M, 307 

respectively. 308 

 309 
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Cellular uptake imaging 310 

Fluorescently-labelled, insulin-loaded NP (FII) were prepared using a modification of the 311 

technique detailed in section 2.2.  Coumarin-6 was added (0.05% w/v) to the organic polymer 312 

solution prior to emulsification [29].  Cells (1x10
5
 per well) were seeded on cover slips in a 6-313 

well plate for 24 hours, then incubated with dynasore (80 µM) for 30 minutes to examine its 314 

inhibitory effect on cellular uptake of NP and then fluorescently labelled NP were incubated with 315 

cells for 24 hours.  Cells not treated with dynasore were examined as a control.  Cells were then 316 

washed with PBS, fixed with 4% formaldehyde for 30 minutes and re-washed with PBS.  DAPI 317 

(5-10 µg ml
-1

) was used to stain the nucleus.  Cells were washed with PBS, suitably mounted and 318 

visualised using fluorescence microscopy (Eclipse 80i, Nikon Ltd., Japan). 319 

 320 

2.10 Statistical analysis 321 

Data are presented as the mean ± standard deviation (SD).  A Student’s t-test and one-way 322 

analysis of variance (ANOVA) were used to determine significance between groups.  Post hoc 323 

analysis using Tukey’s HSD test was used to compare the means of individual groups.  A value 324 

of p<0.05 was considered to be significant. 325 

  326 
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3. Results and Discussion 327 

3.1. Particle size and zeta potential measurements   328 

Creating a PEG-rich periphery on a NP serves many functions, besides the more customary 329 

attempt to increase residence time in the systemic circulation [30].  PEG is associated to NP via 330 

different methods that include covalent bonding, direct addition during NP preparation or surface 331 

adsorption.  In this study, the second approach was adopted, which gives rise to a particulate 332 

surface that reduces opsonisation [31].  This protein adsorption can be minimised further by 333 

altering the density and molecular weight of PEG, a variation that was used in this study (Table 334 

1).  The data in this table show that addition of lower molecular weight (2 kDa) PEG had a 335 

significant effect (p<0.05) on particle size, whereas the higher molecular weight (5 kDa) type 336 

had a lesser effect.  It has been shown that the addition of PEG modifies the association of 337 

polymers during the formation of NP, which leads to a decrease in the resulting particle size, as 338 

observed in this work [32]. 339 

Various methods have been described for characterising the extent of surface charge 340 

shielding provided by PEG on the surface of NP [30].  Here, we found that increasing PEG 341 

content (density and/or molecular weight) had no significant effect on zeta potential.  This 342 

finding is explained by the choice of method used to add PEG into the nanoparticle matrix.  In 343 

this work, PEG does not form a covalent part of the polymeric structure, which is in contrast to 344 

PEG in NP constructed from PEG-PLGA co-blocks, which do show evidence of attenuated 345 

surface charge. 346 

 347 

3.2. Drug loading (DL) and entrapment efficiency (EE) 348 
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Addition of PEG led to a significant increase in DL and direct EE (%) with a greater effect 349 

observed following use of the lower molecular weight PEG (2 kDa) (p<0.05).  During the 350 

double-emulsion-based nano-encapsulation process, it is feasible that PEG chains assemble at the 351 

interface between the peptide-containing internal phase and the organic phase.  This effect 352 

prevents peptide from migrating towards the external aqueous phase, which may explain the 353 

higher encapsulation efficiencies [33]. 354 

The choice of method used to measure entrapment efficiency had a bearing on the 355 

estimate of entrapped drug.  Determination of EE (%) using direct and indirect methods resulted 356 

in higher values when the indirect EE method was compared to the direct EE (p<0.05) method.  357 

The indirect method for estimating EE (%) depends on detecting drug concentration in the 358 

supernatant and is, therefore, not a direct measure of particulate loading.  Indeed, further 359 

processing, such as washing and centrifugation, will remove loosely bound drug and so a 360 

preliminary analysis of the supernatant immediately following NP formation may be an 361 

overestimation.  Although significantly different, the data in Table 1 show reasonably good 362 

agreement between both methods and so it can be concluded that the incorporated insulin is 363 

firmly associated or entrapped within the NP and not loosely bound to its surface. 364 

 365 

3.3. In vitro release kinetics   366 

In vitro release profiles (Fig. 1) showed an initial burst release followed by a sustained release 367 

phase over 144 hours.  There are key factors that affect the release profile of NP.  Larger 368 

particles have a smaller initial burst release and longer sustained release than smaller particles.  369 

In addition, higher drug loadings typically produce a higher initial burst and a faster release rate 370 

[31].  The addition of PEG resulted in a significant increase in the initial release burst and the 371 
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overall % cumulative release over 6 days (p<0.05) for FII, FIII and FIV compared to F1.  FII 372 

exhibited the maximum % cumulative release of approximately 70% (w/w).  Formulations 373 

containing PEG (FII-FIV) had greater drug loadings, which resulted in higher initial burst 374 

releases (Fig. 1).  This initial finding is explained by rapid diffusion of peptide close to the 375 

surface of the NP, which was enhanced by the addition of PEG [30].  Furthermore, an increase in 376 

the porosity of the NP is expected, caused by the presence of PEG in the polymeric phase of the 377 

preparation emulsion [34]. 378 

 379 

3.4. Morphological characterisation  380 

NP displayed a spherical geometry with smooth surfaces (Fig. 2).  The effect of adding PEG, as 381 

represented by FII, decreased particle size and tightened its distribution (Fig. 2C-D), compared 382 

with FI that had no PEG in the primary emulsion (Fig. 2A-B).  Samples that had undergone 48 383 

hours of release were examined using microscopy to determine the residual appearance 384 

following drug extraction (Fig. 2E-G).  We found in this current work that the initial burst 385 

release in the first 24 hours was attributed to diffusion of the drug bound to the surface of the NP 386 

and the succeeding sustained release phase was due to gradual erosion of the polymer matrix 387 

(Fig. 2E-G).  This mechanism aligns to the theoretical mechanisms of drug release proposed by 388 

Danhier et al., comprising a  combined erosion–diffusion process [35].   389 

 390 

3.5. In vitro drug stability 391 

Maintaining the stability of a model payload during the release phase from NP is a key 392 

requirement.  Specifically, the risk of peptide degradation or aggregation during NP fabrication 393 

is a problem and should be monitored and characterised.  High rates of shear produced during 394 
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homogenisation of primary and secondary emulsion phases lead to three-dimensional alternation 395 

in peptide structure [36].  Therefore, in this work, insulin stability was assessed using the 396 

recombinant human insulin molecule (5.8 kDa) as an indicator of peptide integrity. 397 

SDS-PAGE and western blot were used to compare the position of insulin bands obtained 398 

from a (i) standard control, (ii) insulin released from NP and (iii) a placebo NP sample with no 399 

insulin loading.  Bands in Fig. 3 confirm that both the insulin standard and the insulin released 400 

from loaded NP have an approximate molecular weight of 6.00 kDa.  Another method used to 401 

determine the stability of entrapped insulin was to compare its molecular weight, following 402 

release, to that of an insulin standard.  The mass spectra in Fig. 4A and 4B demonstrate close 403 

agreement between peak values, confirming that entrapped insulin did not suffer aggregation or 404 

degradation following NP processing or in vitro release. 405 

 406 

3.6. Cell culture of human skin cell line 407 

Scratch assays were performed using HaCaT and Hs27 cells to investigate the bioactivity of 408 

insulin-loaded PLGA NP.  Compared to other methods, the in vitro scratch assay is particularly 409 

suitable for mimicking cell migration during in vivo wound healing and is compatible with 410 

imaging of live cells during migration to monitor intracellular events [37].  Fronza et al. [38] and 411 

Hrynyk et al. [26] used in vitro scratch assays in their work to measure cell migration across the 412 

scratch as a viable method for quantification of wound closure. 413 

The mean width of the applied scratch was 1.18 mm (average of six measurements between 414 

the four edges of the cross scratch), which started to close due to cell migration, stimulated by 415 

applied insulin (Fig. 5).  The amount of insulin (free or encapsulated in NP) applied to the cell 416 

scratch at the beginning of the assay was equivalent to 10
−7

 M for all conditions, with the 417 
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exception of control media (complete DMEM) and placebo NP (0% insulin control), in which 418 

case PLGA degradation products were assayed to determine if they had a migration response on 419 

cells.  Fig. 6 represents assays of different NP formulations, as displayed in Table 1, on HaCat 420 

cells (Fig. 6A) and Hs27 cells (Fig. 6B). 421 

Migration is considered a normal pattern of behaviour for HaCaT cells, but the differences 422 

between cells exposed to insulin-loaded NP and those growing in the absence of insulin or 423 

exposed to free insulin were significantly different.  This is evident after 24 hours and 36 hours 424 

(Fig. 6A).  Cells exposed to insulin NP formulations (FII-FIV) formed a confluent monolayer at 425 

24 hours.  At 36 hours, the percentage scratch closure was 96.7% for cells exposed to FII in 426 

comparison to 64.8% and 69.6% for cells exposed to DMEM and free insulin, respectively.  427 

Similar results were found for Hs27 cells.  At 48 hours, the percentage scratch closure was 428 

87.9% for cells exposed to FII in comparison to 53.0% and 18.2% for cell migration data 429 

following exposure to control DMEM and free insulin, respectively.  Most of the wells exposed 430 

to insulin-loaded NP formulations (FII-FIV) formed a confluent monolayer at 36 hours. 431 

The short-term effect of all NP formulations on Hs27 was less pronounced than that observed 432 

on the HaCaT cell line.  For this reason, the total time for the scratch assay was extended to 48 433 

hours so that effects on migration were more clearly seen (Fig. 6B).  Free insulin had a negative 434 

effect on migration when compared to control DMEM and placebo NP (p<0.01).  As shown in 435 

Fig. 6B, NP formulations with PEG content (FII-FIV) had a significant effect on cell migration 436 

(p<0.05) compared to FI (no PEG content) or FV (NP with high density and high PEG molecular 437 

weight).  These results demonstrated that if cellular migration was dependent on effective insulin 438 

delivery, then nano-encapsulation was a more efficient approach when compared to direct 439 

exposure of the free drug.  This suggested that particulate uptake was playing a role in the results 440 
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observed in this work.  The addition of PEG to the NP formulations lends weight to this 441 

argument in that it can enhance cellular uptake due to a smaller resultant NP size [39]. 442 

 443 

3.6.2. MTT cell assay (Cell viability) 444 

In this work, the MTT assay was used to evaluate cell proliferation [40] and results demonstrated 445 

the proliferative effect of insulin-loaded NP, which exhibited a more pronounced effect on 446 

HaCaT cells (p<0.001) when compared to Hs27 cells (p<0.05).  For HaCaT cells (Fig. 7A), 447 

insulin-loaded NP extended the proliferative effect for 36 hours (Table 2(a)).  For example, at 36 448 

hours, FIII showed a % cell viability of 112.88 %, whereas free insulin and placebo NP showed 449 

% cell viability of 99.80 % and 98.38%, respectively. The results were different for Hs27 cells, 450 

as seen in Table 2(b).  The maximum proliferation effect of insulin-loaded NP was observed at 451 

12 hours, with no significant difference at 24 and 36 hours (Fig. 7B).  For example, at the 12-452 

hour time point, FIII showed % cell viability of 115.98%, whereas free insulin and placebo NP 453 

showed % cell viability of 100.18% and 102.82%, respectively. 454 

 455 

3.6.3. Effect of dynasore hydrate on cellular uptake of Insulin-NP 456 

As demonstrated in Fig. 8A and 8B, the addition of dynasore hydrate led to a significant decrease 457 

in cell proliferation for HaCaT cells (p<0.02) and Hs27 (p<0.05).  This was attributed to the 458 

inhibitory effect of dynasore, which blocks the endocytic pathways responsible for NP uptake.  459 

HaCaT cell proliferation data for free insulin, control DMEM and insulin-loaded NP after the 460 

addition of dynasore for 30 minutes showed that although dynasore exerts its inhibitory effect on 461 

NP uptake, we found that % cell proliferation of free insulin and insulin-loaded PLGA NP was 462 

significantly (p<0.03) higher than control DMEM, with no significant difference observed 463 
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between free insulin and insulin-loaded NP.  These results support the argument that insulin- 464 

enhanced migration of HaCaT cells via NP translocation passively through the cell membrane 465 

[41] in addition to active cellular uptake, which is blocked in the presence of dynasore.  This is in 466 

agreement with the work of many, such as Wang et al. [42] who propose that NP uptake is done 467 

actively by cellular uptake machinery or by passive penetration.  During endocytosis, NP are 468 

enclosed by endocytic vesicles and are, thus, not directly transferred into the cytosol.  By 469 

contrast, NP internalised by membrane penetration enter the cytosol directly, which can be 470 

preferable for targeted drug delivery.  Therefore, the interaction of NP with the cell membrane 471 

depends on the physical properties of NP and cell membrane structure [42]. 472 

Hs27 cell proliferation data, as seen in Fig. 8B, showed that addition of dynasore for 30 473 

minutes led to inhibition of cell migration with no significant difference observed between free 474 

insulin, insulin-loaded NP and the control (DMEM).  These results mean that the migration 475 

effect of insulin on Hs27 is largely dependent on an active endocytic pathway.  The most 476 

pronounced proliferation effect occurred after insulin-loaded NP application in the absence of 477 

dynasore.  Generally, incubation of HaCaT and Hs27 cells in the presence of dynasore for a 478 

longer time duration (12 hours) led to significant increases in cell growth, as shown in Fig. 8A 479 

and 8B.  Dynasore is a newly identified inhibitor of dynamin GTPase activity, which arrests the 480 

progression of endocytosis at coated-pit stages, inhibits internalisation of cell-surface-bound 481 

TGFβ and promotes co-localisation and accumulation of TβR-I and SARA at the plasma 482 

membrane.  Therefore, dynasore is considered to be a potent enhancer of TGFβ, which 483 

stimulates cell growth and may explain the call viability patterns at prolonged time intervals 484 

[43]. 485 

 486 
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3.6.4. Cellular uptake imaging (fluorescence microscopy) 487 

In this study, coumarin 6 was chosen as a fluorescence label in fluorescence imaging microscopy 488 

due to its low dye-loading requirement [44].  It is observed in Fig. 9A and 9C that the 489 

fluorescence of the coumarin-6 loaded NP (green) are closely located around the nuclei (blue 490 

stained by DAPI), which indicates that the NP have been taken up by the cells, after 24-hour 491 

incubation.  Obviously, cells treated with dynasore have a lower cellular uptake efficiency as it is 492 

shown in Fig. 9B and 9D.  This result further supports the contention that dynasore was blocking 493 

endocytic process responsible for NP uptake [28]. 494 

 495 

4. Conclusion  496 

Recombinant human insulin was encapsulated into PLGA NP by a W/O/W solvent evaporation 497 

technique with high efficiency and reproducibility.  Release studies demonstrated that insulin 498 

was delivered for 6 days in a sustained release manner.  Furthermore, an in vitro scratch assay 499 

established that insulin released from PLGA NP stimulated rapid cell migration following an 500 

induced scratch.  Furthermore, MTT assay results confirmed that insulin could enhance cell 501 

proliferation, particularly if nano-encapsulated.  Blockage of endocytic pathways verified that 502 

particulate uptake was responsible for the enhanced cellular response that surpassed that 503 

observed with exposure to free insulin.  These data suggest that insulin encapsulated within 504 

PLGA NP offers potential for long-term delivery of bioactive insulin for topical delivery devices 505 

and could have significant clinical implications for the treatment to poorly responsive chronic 506 

wounds. 507 

 508 
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Fig 1. In vitro drug release profiles from insulin-loaded PLGA NP (Formulation codes shown in 516 

Table 1).  For clarity, data are shown as mean + SD (n=3).  Single asterisks indicate statistical 517 

significance (p < 0.05) between (FII-FIV) and FI, ns (non-significant difference) between FV 518 

and FI. 519 
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Fig. 2. 521 
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Fig 2. Scanning electron micrographs of insulin-loaded NP prepared with PEG (FII) and without 555 

PEG (FI), observed under low magnification (A and C) and at higher magnification (B and D).  556 

Images in E-G show polymeric structures (FII) with voids following exposure to release phase 557 

media.  Bars in E, F and G represent 5 m. 558 
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Fig. 3. 

 

 

Fig. 3. In vitro stability of human insulin released from NP as assessed from (A) SDS-PAGE and (B) western blot.  Ladders 

indicate molecular weight in kDa.  Lane 1 – blank NP.  Lane 2 – insulin released from NP.  Lane 3 – control insulin.  Lane 4 – 

insulin released from NP.  Lane 5 – control insulin.  Lane 6 – blank NP. 
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Fig. 4A. 
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Fig. 4B. 

 

Fig 4.  MALDI-TOF mass spectrum of (A) an insulin standard and (B) insulin released from NP. 
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Fig. 5A 

 

 

 

 

 

 

  

 

 

 

 

Fig 5A. Representative images of the HaCaT cell line showing the scratch closure process following treatment with DMEM 

control, free insulin and insulin-loaded NP (FII) at different time intervals of zero, 12, 24 and 36 hours.  Scratch dimensions, as 

illustrated in the panel for insulin-loaded NP at zero time, were determined using ImageJ software.  The advancing cell border is 

highlighted using a dashed line. 
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Fig. 5B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5B. Representative images of scratch closure with respect to time for Hs27 cells following treatment with a control (DMEM), free insulin and 

insulin-loaded NP (FII). 
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Fig. 6A. 
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Fig. 6A. HaCaT cell scratch closure assay evaluating bioactivity of recombinant human insulin released from PLGA NP. 
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Fig. 6B. 
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Fig 6B. Hs27 cell scratch closure assay evaluating bioactivity of recombinant human insulin released from PLGA NP.  Single 

asterisks indicate statistical significance between control (DMEM) and insulin-loaded NP.  ** and *+ indicates statistical significance 

between placebo NP and insulin-loaded NP, + indicates statistical significance between free (naked) insulin and insulin-loaded NP; ++ 

indicates statistical significance between free (naked) insulin and placebo NP.  Results are mean ±SD of nine replicates.
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Fig. 7A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7A. Representative images of HaCaT cell line showing cell proliferation, measured by MTT 

assay, treated with control, naked insulin and insulin-loaded NP (FII) at different time intervals of 

12, 24 and 36 hours, respectively. 
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Fig. 7B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7B. Representative images of Hs27 cell line showing cell proliferation, measured by MTT 

assay, treated with control, free insulin and insulin-loaded NP (FII) at different time intervals of 12, 

24 and 36 hours, respectively. 
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Fig. 8A. 
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Fig. 8A. Evaluation of HaCaT cell viability (%) , measured by MTT assay, following treatment with 

control, free insulin and insulin-loaded NP (FII) showing the inhibitory effect of dynasore exposure.  

Between groups significance indicated by * (p<0.02). 
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Fig. 8B. 
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Fig 8B. Hs27 cell viability (%), measured by MTT assay, treated with control, free insulin and insulin-

loaded NP (FII) showing the inhibitory effect of dynasore.  Between groups ANOVA Results showed no 

significant difference (ns). 
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Fig. 9. 

 

   
 

   
 

   
 

   
 

Fig 9. Fluorescence imaging microscopy of HS27 cells (A, B) and HaCaT cells (C, D) after incubation for 

24 hours at 37 °C with coumarin 6-loaded NP (modified FII).  A and C are control images (absence of 

dynasore), B and D are images of cells treated with dynasore (80 μM) for 30 minutes before addition of 

coumarin 6-loaded NP. 
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Table 1. 

Effect of PEG content on size, charge and drug entrapment data for insulin-loaded PLGA NP 

 

Formula 

code 
PEG content in 

primary emulsion 

Mw (% w/w) 

Z-average 

(nm) 
PDI Zeta potential 

(mV) 
Drug loading 
μg per mg NP 

Direct 
EE (%)* 

Indirect EE 

(%)
† 

FI ---- 297.8±18.8 0.15±0.02 -3.94±0.02 28.47±5.35 56.9±10.7 69.1±0.6 

FII 2 kDa (5%) 202.6±20.6 0.38±0.06 -5.70±0.17 33.86±2.71 67.7±5.4 69.5±3.3 

FIII 2 kDa (10%) 186.9±26.0 0.26±0.04 -5.75±0.03 35.60±3.84 71.2±7.6 69.6±5.6 

FIV 5 kDa (5%) 243.5±45.5 0.35±0.03 -7.52±0.07 31.73±4.14 63.4±8.2 73.7±3.2 

FV 5 kDa (10%) 255.6±28.9 0.38±0.02 -8.76±0.17 30.26±4.91 60.5±9.8 69.7±3.0 

Data represent mean ± SD of three replicates.  *Direct entrapment efficiency (EE) measured by BCA †Indirect EE measured by HPLC.
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Table 2(a) 

Percent cell viability of HaCat cells treated with insulin-loaded NP at three time points over 36 hours 

 

Treatment % Cell Viability 

 
   

 12 hours 24 hours 36 hours 

Control (DMEM) 100.00±0.00 100.00±0.00 100.00±0.00 

Naked Human insulin  98.12±4.19 104.22±6.01 99.80±8.63 

Placebo NP 115.32±5.86 105.35±5.41 98.38±9.97 

FI 115.83±5.05 107.56±10.61 110.28±4.84 

FII 114.88±6.79 104.49±6.22 102.12±7.43 

FIII 122.77±10.58 111.80±7.09 112.88±7.98 

FIV 118.43±7.20 110.26±5.67 107.06±9.05 

FV 124.38±5.55 110.63±4.82 114.82±5.50 

* results show mean±SD of six replicates 
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Table 2(b) 

Percent cell viability of Hs27 cells treated with insulin-loaded NP at three time points over 36 hours   

 

Treatment  % Cell Viability* 

  

 
12 hours 24 hours 36 hours 

Control (DMEM) 100.00±0.00 100.00±0.00 100.00±0.00 

Naked Human insulin  100.18±10.24 100.92±5.88 101.96±13.46 

Placebo NP 102.82±12.97 104.25±14.73 107.51±13.01 

FI 111.73±8.18 103.63±13.60 111.32±17.79 

FII 114.00±16.64 104.35±6.07 104.57±11.84 

FIII 115.98±16.00 103.68±3.79 105.98±14.71 

FIV 107.45±15.73 114.74±5.37 114.23±18.00 

FV 108.80±16.92 108.26±8.93 100.91±13.32 

* results show mean±SD of six replicates 
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