6,273 research outputs found

    Tunable graphene system with two decoupled monolayers

    Get PDF
    The use of two truly two-dimensional gapless semiconductors, monolayer and bilayer graphene, as current-carrying components in field-effect transistors (FET) gives access to new types of nanoelectronic devices. Here, we report on the development of graphene-based FETs containing two decoupled graphene monolayers manufactured from a single one folded during the exfoliation process. The transport characteristics of these newly-developed devices differ markedly from those manufactured from a single-crystal bilayer. By analyzing Shubnikov-de Haas oscillations, we demonstrate the possibility to independently control the carrier densities in both layers using top and bottom gates, despite there being only a nanometer scale separation between them

    Weak localisation magnetoresistance and valley symmetry in graphene.

    Get PDF
    Due to the chiral nature of electrons in a monolayer of graphite (graphene) one can expect weak antilocalisation and a positive weak-field magnetoresistance in it. However, trigonal warping (which breaks p to −p symmetry of the Fermi line in each valley) suppresses antilocalisation, while inter-valley scattering due to atomically sharp scatterers in a realistic graphene sheet or by edges in a narrow wire tends to restore conventional negative magnetoresistance. We show this by evaluating the dependence of the magnetoresistance of graphene on relaxation rates associated with various possible ways of breaking a ’hidden’ valley symmetry of the system

    Leadership Integrity and Diversity in the Workplace

    Get PDF
    Leadership integrity and diversity are significant factors in the relationship between leader and employee in the workplace. For employees to follow their leaders, they want someone that they can trust. They will not follow those whom they do not trust or who will not or cannot disclose a clear set of values, ethics and standards. This research examined 941 responses from workers in the United States who completed the Perceived Leader Integrity Scale (PLIS) developed by Craig and Gustafson (1998) and the Workplace Diversity Survey by De Meuse and Hostager (1996), along with demographic questions. This research also examined the relationship of perceived leadership integrity and workplace diversity

    Symmetry of boundary conditions of the Dirac equation for electrons in carbon nanotubes.

    Get PDF
    We consider the effective mass model of spinless electrons in single wall carbon nanotubes that is equivalent to the Dirac equation for massless fermions. Within this framework we derive all possible energy independent hard wall boundary conditions that are applicable to metallic tubes. The boundary conditions are classified in terms of their symmetry properties and we demonstrate that the use of different boundary conditions will result in varying degrees of valley degeneracy breaking of the single particle energy spectrum

    Motherhood in the teens and twenties: some surprises.

    Get PDF
    We report a study of the association of health and social support variables with motherhood in teenagers and older mothers. Both teenage and older mothers reported poorer physical and mental health and fewer and less frequent social contacts than their nulliparous peers. Contrary to expectation, however, older mothers reported less extensive and less adequate social support networks than did teenagers

    Contrast-enhanced micro-CT imaging in murine carotid arteries : a new protocol for computing wall shear stress

    Get PDF
    Background: Wall shear stress (WSS) is involved in the pathophysiology of atherosclerosis. The correlation between WSS and atherosclerosis can be investigated over time using a WSS-manipulated atherosclerotic mouse model. To determine WSS in vivo, detailed 3D geometry of the vessel network is required. However, a protocol to reconstruct 3D murine vasculature using this animal model is lacking. In this project, we evaluated the adequacy of eXIA 160, a small animal contrast agent, for assessing murine vascular network on micro-CT. Also, a protocol was established for vessel geometry segmentation and WSS analysis. Methods: A tapering cast was placed around the right common carotid artery (RCCA) of ApoE(-/-) mice (n = 8). Contrast-enhanced micro-CT was performed using eXIA 160. An innovative local threshold-based segmentation procedure was implemented to reconstruct 3D geometry of the RCCA. The reconstructed RCCA was compared to the vessel geometry using a global threshold-based segmentation method. Computational fluid dynamics was applied to compute the velocity field and WSS distribution along the RCCA. Results: eXIA 160-enhanced micro-CT allowed clear visualization and assessment of the RCCA in all eight animals. No adverse biological effects were observed from the use of eXIA 160. Segmentation using local threshold values generated more accurate RCCA geometry than the global threshold-based approach. Mouse-specific velocity data and the RCCA geometry generated 3D WSS maps with high resolution, enabling quantitative analysis of WSS. In all animals, we observed low WSS upstream of the cast. Downstream of the cast, asymmetric WSS patterns were revealed with variation in size and location between animals. Conclusions: eXIA 160 provided good contrast to reconstruct 3D vessel geometry and determine WSS patterns in the RCCA of the atherosclerotic mouse model. We established a novel local threshold-based segmentation protocol for RCCA reconstruction and WSS computation. The observed differences between animals indicate the necessity to use mouse-specific data for WSS analysis. For our future work, our protocol makes it possible to study in vivo WSS longitudinally over a growing plaque

    Magnetotransport Properties of Quasi-Free Standing Epitaxial Graphene Bilayer on SiC: Evidence for Bernal Stacking

    Full text link
    We investigate the magnetotransport properties of quasi-free standing epitaxial graphene bilayer on SiC, grown by atmospheric pressure graphitization in Ar, followed by H2_2 intercalation. At the charge neutrality point the longitudinal resistance shows an insulating behavior, which follows a temperature dependence consistent with variable range hopping transport in a gapped state. In a perpendicular magnetic field, we observe quantum Hall states (QHSs) both at filling factors (ν\nu) multiple of four (ν=4,8,12\nu=4, 8, 12), as well as broken valley symmetry QHSs at ν=0\nu=0 and ν=6\nu=6. These results unambiguously show that the quasi-free standing graphene bilayer grown on the Si-face of SiC exhibits Bernal stacking.Comment: 12 pages, 5 figure

    High On/Off Ratios in Bilayer Graphene Field Effect Transistors Realized by Surface Dopants

    Full text link
    The unique property of bilayer graphene to show a band gap tunable by external electrical fields enables a variety of different device concepts with novel functionalities for electronic, optoelectronic and sensor applications. So far the operation of bilayer graphene based field effect transistors requires two individual gates to vary the channel's conductance and to create a band gap. In this paper we report on a method to increase the on/off ratio in single gated bilayer graphene field effect transistors by adsorbate doping. The adsorbate dopants on the upper side of the graphene establish a displacement field perpendicular to the graphene surface breaking the inversion symmetry of the two graphene layers. Low temperature measurements indicate, that the increased on/off ratio is caused by the opening of a mobility gap. Beside field effect transistors the presented approach can also be employed for other bilayer graphene based devices like photodetectors for THz to infrared radiation, chemical sensors and in more sophisticated structures such as antidot- or superlattices where an artificial potential landscape has to be created.Comment: 4 pages, 4 figure

    A glimpse into the differential topology and geometry of optimal transport

    Full text link
    This note exposes the differential topology and geometry underlying some of the basic phenomena of optimal transportation. It surveys basic questions concerning Monge maps and Kantorovich measures: existence and regularity of the former, uniqueness of the latter, and estimates for the dimension of its support, as well as the associated linear programming duality. It shows the answers to these questions concern the differential geometry and topology of the chosen transportation cost. It also establishes new connections --- some heuristic and others rigorous --- based on the properties of the cross-difference of this cost, and its Taylor expansion at the diagonal.Comment: 27 page
    corecore